MP 8.01.39
Treatment of Tinnitus

BCBSA Ref. Policy: 8.01.39
Last Review: 02/19/2020
Effective Date: 02/19/2020
Section: Therapy

DISCLAIMER/INSTRUCTIONS FOR USE

Medical Policy provides general guidance for applying Blue Cross of Idaho benefit plans (for purposes of Medical Policy, the terms “benefit plan” and “member contract” are used interchangeably). Coverage decisions must reference the member specific benefit plan document. The terms of the member specific benefit plan document may be different than the standard benefit plan upon which this Medical Policy is based. If there is a conflict between a member specific benefit plan and the Blue Cross of Idaho’s standard benefit plan, the member specific benefit plan supersedes this Medical Policy. Any person applying this Medical Policy must identify member eligibility, the member specific benefit plan, and any related policies or guidelines prior to applying this Medical Policy. Blue Cross of Idaho Medical Policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the member specific benefit plan coverage. Blue Cross of Idaho reserves the sole discretionary right to modify all its Policies and Guidelines at any time. This Medical Policy does not constitute medical advice.

POLICY

Psychological coping therapy including cognitive-behavioral therapy, self-help cognitive-behavioral therapy, tinnitus coping therapy, acceptance and commitment therapy, and psychophysiological treatment, may be considered **medically necessary** for persistent and bothersome tinnitus.

Treatment of tinnitus with any of the following therapies is considered **investigational**:

- biofeedback
- tinnitus maskers, customized sound therapy
- combined psychological and sound therapy (e.g., tinnitus retraining therapy)
- transcranial magnetic stimulation,
- transcranial direct current stimulation
- electrical transcutaneous electrical stimulation of the ear, electromagnetic energy
- transmeatal laser irradiation.

Note: This policy does not address surgical (e.g., cochlear or brainstem implants) or pharmacologic (e.g., use of amitriptyline or other tricyclic antidepressants) treatments of tinnitus, or injection of botulinum toxin.
Tinnitus describes the perception of any sound in the ear in the absence of an external stimulus and presents as a malfunction in the processing of auditory signals. A hearing impairment, often noise-induced or related to aging, is commonly associated with tinnitus. Clinically, tinnitus is subdivided into subjective and objective types. The latter describes the minority of cases, in which an external stimulus is potentially heard by an observer (e.g., by placing a stethoscope over the patient’s external ear). Common causes of objective tinnitus include middle ear and skull-based tumors, vascular abnormalities, and metabolic derangements. The more common type is subjective tinnitus, which is frequently self-limited. In a small subset of patients with subjective tinnitus, its intensity and persistence leads to disruption of daily life. While many patients habituate to tinnitus, others may seek medical care if the tinnitus becomes too disruptive.

Many treatments are supportive because currently, there is no cure. One treatment, called tinnitus masking therapy, has focused on the use of devices worn in the ear that produce a broad band of continuous external noise that drowns out or masks the tinnitus. Psychological therapies may also be provided to improve coping skills, typically requiring 4 to 6 one-hour visits over an 18-month period. Tinnitus retraining therapy, also referred to as tinnitus habituation therapy, is based on the theories of Jastreboff, who proposed that tinnitus itself is related to the normal background electrical activity in auditory nerve cells, but the key factor in some patients’ unpleasant response to the noise is due to a spreading of the signal and an abnormal conditioned reflex in the extra-auditory limbic and autonomic nervous systems. The goal of tinnitus retraining therapy is to habituate (retrain) the subcortical and cortical response to the auditory neural activity. In contrast to tinnitus masking, the auditory stimulus is not intended to drown out or mask the tinnitus but is set at a level such that the tinnitus can still be detected. This strategy is thought to enhance extinction of the subconsciously conditioned reflexes connecting the auditory system with the limbic and autonomic nervous systems by increasing neuronal activity within the auditory system. Treatment may also include the use of hearing aids to increase external auditory stimulation. The Heidelberg model uses an intensive program of active and receptive music therapy, relaxation with habituation to the tinnitus sound, and stress mapping with a therapist.

Sound therapy is a treatment approach based on evidence of auditory cortex reorganization (cortical remapping) with tinnitus, hearing loss, and sound/frequency training. One type of sound therapy uses an ear-worn device (Neuromonics Tinnitus Treatment) prerecorded with selected relaxation audio and other sounds spectrally adapted to the individual patient’s hearing thresholds. This is achieved by boosting the amplitude of those frequencies at which an audiogram has shown the patient to have a reduced hearing threshold. Also being evaluated is auditory tone discrimination training at or around the tinnitus frequency. Another type of sound therapy being investigated uses music with the frequency of the tinnitus removed (notched music) to promote reorganization of sound processing in the auditory
cortex. One theory behind the notched music is that tinnitus is triggered by injury to inner ear hair cell population, resulting in both a loss of excitatory stimulation of the represented auditory cortex and loss of inhibition on the adjoining frequency areas. It is proposed that this loss of inhibition leads to hyperactivity and overrepresentation at the edge of the damaged frequency areas and that removing the frequencies overrepresented at the audiometric edge will result in the reorganization of the brain.

Electrical stimulation to the external ear has also been investigated and is based on the observation that electrical stimulation of the cochlea associated with a cochlear implant may be associated with a reduction in tinnitus. Transcranial magnetic stimulation, electrical stimulation, and transmeatal low-power laser irradiation have also been evaluated.

Regulatory Status

The Neuromonics® Tinnitus Treatment is one of many tinnitus maskers cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. It is “...intended to provide relief from the disturbance of tinnitus while using the system, and with regular use (over several months) may provide relief to the patient whilst not using the system.” FDA product code: KLW.

Table 1. Devices Cleared by the U.S. Food and Drug Administration

<table>
<thead>
<tr>
<th>Devices</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinnitus Sound Generator Module</td>
<td>Gn Hearing A/S</td>
<td>11/30/2018</td>
<td>K180495</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Audifon Tinnitus-Module</td>
<td>Audiofon USA Inc.</td>
<td>10/19/2017</td>
<td>K171243</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Tinnilogic Mobile Tinnitus Management De</td>
<td>Jiangsu Betterlife Medical Co., Ltd.</td>
<td>5/17/2017</td>
<td>K163094</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Sound Options Tinnitus Treatment</td>
<td>Sound Options Tinnitus Treatments Inc.</td>
<td>9/28/2016</td>
<td>K161562</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Hypersound Tinnitus Module</td>
<td>Turtle Beach Corporation</td>
<td>8/23/2016</td>
<td>K161331</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Desyncre For Tinnitus Therapy System, De</td>
<td>Neurotherapies Reset Gmbh.</td>
<td>1/20/2016</td>
<td>K151558</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Reve134</td>
<td>Kw Ear Lab, Inc</td>
<td>10/9/2015</td>
<td>K151719</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Serenity</td>
<td>Sanuthera, Inc.</td>
<td>7/27/2015</td>
<td>K150014</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Soundcure Serenade Tinnitus Treatment Sy</td>
<td>Soundcure, Inc.</td>
<td>4/13/2015</td>
<td>K150065</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Levo Tinnitus Masking Software Device</td>
<td>Otoharmonics Corp</td>
<td>7/18/2014</td>
<td>K140845</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Solace Sound Generators</td>
<td>Amplisound Hearing Products & Services</td>
<td>3/25/2014</td>
<td>K132965</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Tinnitus Sound support</td>
<td>Oticon A/S</td>
<td>3/18/2014</td>
<td>K133308</td>
<td>Tinnitus Relief</td>
</tr>
<tr>
<td>Wave 2g, Soul</td>
<td>Hansaton Akustik Gmbh</td>
<td>1/3/2014</td>
<td>K130937</td>
<td>Tinnitus Relief</td>
</tr>
</tbody>
</table>

RATIONALE

This evidence review was created in August 2001 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through December 20, 2019.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.
To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice. The following is a summary of the key literature to date.

Tinnitus Treatment Overview

In 2013, the Agency for Healthcare Research and Quality published a comparative effectiveness review on assessment and treatment of tinnitus.² Treatments evaluated included laser, transcranial magnetic stimulation, hyperbaric oxygen therapy, sound treatments, and psychological/behavioral treatments. Studies met inclusion criteria if they had a comparator or control treatment, which could include placebo, no treatment, waiting-list, treatment as usual, or other intervention. Eleven studies selected focused on medical interventions, 4 on sound technology interventions, and 19 on psychological and behavioral interventions. Reviewers found insufficient evidence for medical and sound technology interventions. For psychological and behavioral interventions, there was low-level evidence for an effect of cognitive-behavioral therapy (CBT) on tinnitus-specific quality of life, and low-level evidence for no effect of CBT on subjective loudness, sleep disturbance, anxiety, depression, and global quality of life. Evidence was insufficient for other psychological and behavioral interventions such as tinnitus retraining therapy and relaxation.

Psychological Coping Therapy for the Treatment of Tinnitus

Clinical Context and Test Purpose

Many treatments are supportive because, currently, there is no cure. Psychological therapies may be provided to improve coping skills, typically requiring 4 to 6 one-hour visits over an 18-month period, in patients with persistent, bothersome tinnitus.

The question addressed in this evidence review is: Does nonpharmacologic therapy such as psychological coping therapy improve the net health outcome for patients with tinnitus?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals with persistent, bothersome tinnitus.

Interventions

The therapy being considered is psychological coping therapy.

Comparators

Comparators of interest include standard therapy including stress management and noise suppression therapy.
Outcomes

The general outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Commonly used self-report questionnaires include the Tinnitus Handicap Inventory (THI), Tinnitus Questionnaire (TQ), Tinnitus Functional Index (TFI) and Tinnitus Handicap Questionnaire (THQ). The TQ has 52 items that assess emotional and cognitive distress, intrusiveness, hearing difficulties, sleep disturbance, and somatic complaints. The THQ has 27 items covering social, emotional, and behavioral effects; hearing difficulties; and outlook on tinnitus. The TFI is a 25-items questionnaire scoring the severity and negative impact of tinnitus in the domains of intrusiveness, sense of control, cognitive complaints, sleep disturbance, auditory difficulties, relaxation, quality of life and emotional distress. The TFI is designed to be more sensitive to change, for which the patient must answer each item on a Likert scale from 0 to 10, with higher numbers indicating greater distress. The minimal clinically important difference of the TFI is considered to be 13 points. Consensus recommendations on core outcome measures in tinnitus suggest that different domains would be appropriate for different interventions. Jacquemin ref for sound therapy, the most relevant domains would be intrusiveness, ability to ignore, concentration, quality of sleep, and sense of control. The committee concluded that for psychological therapies, domains of intrusiveness, acceptance, mood, negative thoughts and beliefs, and sense of control were considered more appropriate.

The existing literature evaluating psychological coping therapy as a treatment for persistent, bothersome tinnitus has varying lengths of follow-up, ranging from 6 months to 1 year. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, 1 year of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Review of Evidence

A 2010 Cochrane review included 8 trials with a total of 468 participants. Inclusion criteria for all but 1 trial included the presence of symptoms for at least 6 months and subjective impairment or annoyance. The experimental groups included CBT, self-help CBT, tinnitus coping therapy, psychophysiological treatment, and biofeedback. There were no significant differences in subjective tinnitus loudness between psychological therapies and either no treatment or another intervention, but there was an improvement in quality of life associated with decreased global tinnitus severity. The analysis found evidence that depression scores improved when comparing CBT with no treatment, but there was no evidence of benefit in depression scores when compared with other treatments (yoga, education, minimal contact education).

Landry et al. (2019) performed a network meta-analysis of the effect of various forms of cognitive and/or behavioral therapy on tinnitus-related quality of life, depression, and anxiety (Table 2). Tinnitus loudness was not assessed, as the earlier Cochrane review had concluded that CBT altered the impact of tinnitus, but not tinnitus loudness. Twelve studies were included in a pairwise meta-analysis of active
therapy versus waitlist controls and 19 studies were included in the network meta-analysis that compared various forms of CBT (Table 3). All of the studies were rated as at high-risk of bias characterized by lack of blinding, high drop-out rates, and lack of intent-to-treat analysis. Heterogeneity was high, driven largely by the positive results of 2 studies that assessed internet-based CBT. Both self-administered and face-to-face CBT were found to be superior to a waitlist control for health-related quality of life and Tinnitus-related Depression. Ranking suggested that guided self-administered CBT was the most effective treatment in improving tinnitus-specific health-related quality of life, depression, and anxiety, although there was no statistical difference between the treatments. It was noted that the greater effect size of self-administered CBT protocols may be related to motivation levels in patients who volunteer for self-administered therapy.

Table 2. Network Meta-analysis Characteristics

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Dates</th>
<th>Trials</th>
<th>Participants</th>
<th>N (Range)</th>
<th>Design</th>
<th>Treatment Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landry et al. (2019)</td>
<td>2018</td>
<td>19</td>
<td>Adult patients with tinnitus</td>
<td>1,543 (23 - 304)</td>
<td>RCT</td>
<td>1 to 15 weeks</td>
</tr>
</tbody>
</table>

RCT: randomized controlled trial.

Table 3. Network Meta-analysis Results

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Health-Related Quality of Life</th>
<th>Depression</th>
<th>Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>1,111</td>
<td>925</td>
<td>309</td>
</tr>
<tr>
<td>Active Therapy vs. Waitlist Control</td>
<td>SMD (95% CI)</td>
<td>1.46 (67 to 2.24)</td>
<td>0.95 (0.2 to 1.7)</td>
</tr>
<tr>
<td>I² (p)</td>
<td>95.3%</td>
<td>93.7%</td>
<td>97%</td>
</tr>
<tr>
<td>Group CBT (Face to Face)</td>
<td>SMD (95% CI)</td>
<td>0.75 (0.53 to 0.97)</td>
<td>0.39 (0.17 to 0.60)</td>
</tr>
<tr>
<td>I² (p)</td>
<td>0.0% (0.767)</td>
<td>0.0% (0.558)</td>
<td>0.0% (0.719)</td>
</tr>
<tr>
<td>Mixed CBT (Self-administered)</td>
<td>SMD (95% CI)</td>
<td>3.44 (0.22 to 7.09)</td>
<td>2.80 (1.64 to 7.23)</td>
</tr>
<tr>
<td>I² (p)</td>
<td>99.0% (0.00)</td>
<td>99.0% (0.00)</td>
<td>2.5% (0.311)</td>
</tr>
</tbody>
</table>

CI: confidence interval; CBT: cognitive-behavioral therapy; SMD: standardized mean difference.

RCTs not included in the meta-analysis by Landry et al (2019) are described below.

Cognitive-Behavioral Therapy

McKenna et al. (2018) published the results of their study that describes the impact of mindfulness-based cognitive therapy (MBCT) in a “real world” tinnitus clinic, using standardized MBCT on the largest sample of patients (n=182) with chronic tinnitus to date. Participants were adults with chronic and distressing tinnitus who completed an 8-week MBCT group. Measures of tinnitus-related distress, psychological distress, tinnitus acceptance, and mindfulness were taken at baseline, postintervention, and at 6-week follow-up. MBCT was associated with significant improvements in all outcome measures. Postintervention, reliable improvements were detected in tinnitus-related distress in 50% (n=91) and in psychological distress in 41.2% (n=75) of patients.
Self-Help and Internet-Based Coping Therapies

Weise et al. (2017) randomized 124 patients with severe tinnitus-related distress to therapist-guided internet-based cognitive-behavioral therapy (iCBT) or a moderated online discussion forum (Table 4). For the primary outcome of tinnitus-related distress, there was a significant interaction of time by a group that was supported by large effect sizes (Table 5). For the secondary outcomes, Hospital Anxiety and Depression Scale, Tinnitus Acceptance Questionnaire, and Insomnia Severity Index, small-to-medium effect sizes (ES) were found. Benefits in the iCBT group were clinically significant and maintained at 6-month and 1-year follow-ups. Strengths of this trial included power calculations and adequate follow-up rates, along with randomization by an independent researcher. However, neither patients nor evaluators were blinded to treatment condition, and the control group crossed over to iCBT after the treatment period, limiting interpretation of the 6-month and 1-year follow-ups (Tables 6 and 7).

Beukes et al. (2018) randomized (1:1) 146 individuals with tinnitus to 8 weeks of iCBT guided by an audiologist or to a control group, which received the therapy after the experimental group. Among several assessment measures given to the groups (which included a number of questionnaires), the primary measure of interest was the TFI score. At baseline, the mean TFI score was similar between the experimental (59.8) and control (59.2) groups; given a clinically significant reduction of 23.3 points, over half of the experimental group (51%) experienced such a reduction, compared with 5% of the control group following the initial 8 weeks of the study. Secondary measures were assessed by the following questionnaires: Insomnia Severity Index, Patient Health Questionnaire, Hyperacusis Questionnaire, Cognitive Failures Questionnaire, Satisfaction with Life Scales, Generalized Anxiety Disorder scale, and Hearing Handicap Inventory for Adults-Screening version. For all but the last 2 measures listed (anxiety and hearing disability), significant improvements were observed for varying percentages of the experiment group, especially from the fourth week of treatment to its end. The authors acknowledged several limitations, among them the lack of data regarding treatment credibility and the inclusion of several questionnaires without psychometric validation. Also, the patients were not identified in a clinical setting, but responded to a general call for participants with tinnitus; finally, only 73% of the experimental group and 82% of the control group remained to the study’s completion at 2 months.

Beukes et al. (2019) conducted a non-inferiority trial that compared iCBT with 2 to 3 face-to-face sessions with a clinician. The time that clinicians spent on the therapy was reduced in the iCBT group, with non-inferior results. A limitation in this trial is that the efficacy of the control condition has not been established, but the mean change for the face-to-face intervention did exceed the minimally clinically significant difference of 13 points. iCBT was not statistically superior to 2 to 3 clinician sessions.

Table 4. Summary of Key RCT Trial Characteristics

<table>
<thead>
<tr>
<th>Author (Year); Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Active</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weise et al (2017)²</td>
<td></td>
<td></td>
<td></td>
<td>124 Patients with tinnitus</td>
<td>iCBT</td>
<td>Waitlist</td>
</tr>
<tr>
<td>Beukes et al (2018)³</td>
<td></td>
<td></td>
<td></td>
<td>146 individuals with tinnitus recruited from the community</td>
<td>8 weeks of iCBT (n=73)</td>
<td>Waitlist (n=73)</td>
</tr>
<tr>
<td>Beukes et al (2019) ³</td>
<td>U.K.</td>
<td>3</td>
<td>2016-2017</td>
<td>92 patients who had been referred to a tinnitus clinic because of</td>
<td>8 weeks of guided iCBT (n=46)</td>
<td>2 to 3 face-to-face sessions with a clinician (n=46)</td>
</tr>
</tbody>
</table>
Table 5. Summary of Key RCT Trial Results/Outcomes

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Quality of Life</th>
<th>N</th>
<th>Effect Size (95% CI)</th>
<th>0.83 (0.47 to 1.20)</th>
<th>1.08 (0.71 to 1.64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weise et al (2017)</td>
<td>THI</td>
<td>7</td>
<td>TQ</td>
<td>72</td>
<td>161</td>
</tr>
<tr>
<td>Beukes et al (2018)</td>
<td>TFI % Improved by 23.3 points</td>
<td>81</td>
<td>iCBT</td>
<td>51%</td>
<td>70%</td>
</tr>
<tr>
<td>Beukes et al (2019)</td>
<td>TFI after treatment</td>
<td>88</td>
<td>TFI 2 mo after treatment</td>
<td>74</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 6. Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weise et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beukes et al (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beukes et al (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

Table 7. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weise et al</td>
<td>1, 2, 3, 6</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

iCBT: internet-based cognitive-behavioral therapy; RCT: randomized controlled trials.
Section Summary: Psychological Coping Therapy

The evidence on the use of psychological coping therapies in patients who have persistent, bothersome tinnitus includes a number of RCTs and meta-analyses of RCTs. These therapies are intended to reduce tinnitus impairment and improve health-related quality of life. Meta-analyses of a variety of cognitive and behavioral therapies reported improvements in global tinnitus severity and quality of life, even when tinnitus loudness was not affected. There is evidence that self-help and Internet-based therapies may be as effective as traditional group therapy for various forms of behavioral and cognitive therapies, although patients may have greater satisfaction with group treatment. Overall, the literature indicates that psychological therapies can improve coping skills and quality of life and decrease tinnitus-associated distress and annoyance compared with wait-listed controls.

Sound Therapy for Treatment of Tinnitus

Clinical Context and Test Purpose

One treatment, called tinnitus masking therapy, has focused on the use of devices worn in the ear that produce a broad band of continuous external noise that drowns out or masks the tinnitus. Tinnitus retraining therapy, also referred to as tinnitus habituation therapy, is based on the theories of Jastreboff, who proposed that tinnitus itself is related to the normal background electrical activity in auditory nerve cells, but the key factor in some patients’ unpleasant response to the noise is due to a spreading of the signal and an abnormal conditioned reflex in the extra-auditory limbic and autonomic nervous systems. The goal of tinnitus retraining therapy is to habituate (retrain) the subcortical and cortical response to the auditory neural activity. In contrast to tinnitus masking, the auditory stimulus is not intended to drown out or mask the tinnitus but is set at a level such that the tinnitus can still be detected. This strategy is thought to enhance extinction of the subconsciously conditioned reflexes connecting the auditory system with the limbic and autonomic nervous systems by increasing neuronal activity within the auditory system. Treatment may also include the use of hearing aids to increase external auditory stimulation. The Heidelberg model uses an intensive program of active and receptive music therapy, relaxation with habituation to the tinnitus sound, and stress mapping with a therapist.
Sound therapy is another treatment approach based on evidence of auditory cortex reorganization (cortical remapping) with tinnitus, hearing loss, and sound/frequency training. One type of sound therapy uses an ear-worn device (Neuromonics Tinnitus Treatment) prerecorded with selected relaxation audio and other sounds spectrally adapted to the individual patient’s hearing thresholds. This is achieved by boosting the amplitude of those frequencies at which an audiogram has shown the patient to have a reduced hearing threshold. Also being evaluated is auditory tone discrimination training at or around the tinnitus frequency. Another type of sound therapy being investigated uses music with the frequency of the tinnitus removed (notched music) to promote reorganization of sound processing in the auditory cortex. One theory behind the notched music is that tinnitus is triggered by injury to inner ear hair cell population, resulting in both a loss of excitatory stimulation of the represented auditory cortex and loss of inhibition on the adjoining frequency areas. It is proposed that this loss of inhibition leads to hyperactivity and overrepresentation at the edge of the damaged frequency areas and that removing the frequencies overrepresented at the audiometric edge will result in the reorganization of the brain.

The question addressed in this evidence review is: Does sound therapy improve the net health outcome for patients with tinnitus?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals with tinnitus.

Interventions

The therapy being considered is sound therapy.

Comparators

Comparators of interest include standard therapy including stress management and noise suppression therapy.

Outcomes

The general outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Commonly used self-report questionnaires include the THI, TQ, TFI, and the THQ as described above.

The existing literature evaluating sound therapy as a treatment for tinnitus has varying lengths of follow-up, ranging from 6-months. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, 6-months of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.
Tinnitus Masking

A 2018 Cochrane review evaluated the evidence for masking in the management of tinnitus in adults. Eight RCTs (total N=590 participants) were included that used noise-generating devices and/or hearing aids as the sole management tool or in combination with other strategies, including counseling. Seven studies looked at hearing aids, 3 evaluated sound generators, and 4 evaluated combination devices. The quality of the evidence was low. Risk of bias was unclear and there was little blinding. No studies were identified that compared masking devices with a wait-list control or other control group. Reviewers concluded that it was uncertain whether a masking device (hearing aid, sound generator, or combination) would result in any difference in tinnitus symptom severity.

A 2015 study of preferences for hearing aids and tinnitus maskers among Iran-Iraq War veterans who had blast-induced chronic tinnitus found that, after 2 years, 84% of the 974 patients preferred just a hearing aid, 2.7% chose the noise generator, and the rest preferred to use both devices.

Customized Sound Therapy

Four randomized or pseudorandomized controlled trials were identified on a variety of methods of customized sound therapy. These trials are discussed by the type of sound therapy.

Neuromonics Tinnitus Treatment

A 2008 industry-sponsored randomized study compared treatment with a proprietary customized acoustic stimulus for tinnitus retraining or counseling alone. Fifty (of 88 subjects recruited) were found to meet the inclusion and exclusion criteria. Mean length of time that tinnitus bothered patients was 3.6 years (range, 0.2-23 years). Patients were allocated to 1 of 4 groups, (1) customized acoustic stimulus at high intensity for 2 hours a day, (2) customized acoustic stimulus at a lower intensity, (3) tinnitus retraining therapy with a broadband stimulator and counseling, or (4) counseling alone. Subjects were instructed to listen to the devices for 2 hours a day at the time of day when symptoms were most severe and at a level that completely (group 1) or partially (group 2) masked the tinnitus; device use averaged 1.8 hours a day (range, 0.4-6.8 h/d). The 2 customized acoustic stimuli groups were combined in the analysis due to overlap in the self-administered stimulus intensity (absence of statistical difference between groups). All patients lost to follow-up were included in the dataset for analysis using the last value carried forward method. Mean Tinnitus Reaction Questionnaire (TRQ) scores improved for the combined customized acoustic stimuli group over the 12 months of the study. TRQ scores did not improve significantly in the control groups. At 6-month follow-up, 86% of patients in the combined acoustic stimuli group had met the definition of success based on 40% improvement in TRQ scores. Normalized visual analog scale (VAS) scores for tinnitus severity, general relaxation, and loudness tolerance were improved relative to both baseline and the control group’s scores at 12 months. Perceived benefits were also greater with the customized acoustic stimulus.

Another 2008 publication from the developers of the same acoustic device described results for the first 552 patients who received treatment at specialized clinics in Australia. Patients were divided into 3 levels, based on complicating factors and proposed suitability for the treatment. Tier 1 (237 patients) did not display any nonstandard or complicating factors. Tier 2 (223 patients) exhibited 1 or more of the following: psychological disturbance, a low-level of tinnitus-related disturbance (TRQ score <17), and/or moderately severe or severe hearing loss in 1 ear (>50 dB). Tier 3 (92 patients) exhibited 1 or more of the following: “reactive” tinnitus, continued exposure to high levels of noise during treatment, active pursuit of compensation, multitone tinnitus, pulsatile tinnitus, Meniere disease, and/or hearing loss of greater than 50 dB in both ears. Of the 552 patients who began therapy, 62 (11%) discontinued treatment, and 20 (4%) were lost to follow-up. After an average treatment duration of 37 weeks, TRQ
scores improved (>40%) in 92% of tier 1 patients, in 60% of tier 2 patients, and in 39% of tier 3 patients. Investigators did not report whether the reduction in symptoms persisted when treatment stopped. Controlled studies with long-term follow-up would be needed to evaluate the durability of treatment and the relative contribution to these results of generalized masking versus desensitization.

Auditory Discrimination Training

Herraiz et al. (2010) randomized 45 patients who scored mild or moderate (<56) on the THI to auditory discrimination training with the same frequency as the tinnitus pitch or training on a frequency near to but not the same as the tinnitus pitch. An additional 26 patients were included in a waiting-list control group. Auditory discrimination consisted of 20 minutes of training every day for 30 days, during which the patient had to record whether each stimulus pair was the same or different. Forty-one (91%) patients completed training and follow-up questionnaires. Four percent of patients in the waiting-list control group reported their tinnitus to be better compared with 42% of patients in the auditory discrimination training group. Self-reported improvement in tinnitus tended to be greater in the near to but not the same frequency as the tinnitus pitch group (54%) compared with the same frequency as the tinnitus pitch group (26%), although subjective improvement varied, and did not differ statistically. Subjective improvement in VAS tinnitus intensity was modest and similar in both groups (0.65 vs. 0.32, respectively). The decrease in THI scores was significantly greater in the patients near to but not the same as the tinnitus pitch frequencies (11.31) than in patients trained on the same as the tinnitus pitch frequencies (2.11; p=0.035).

Notched Music

In another publication, Okamato et al. (2010) reported on a small (N=24) double-blind, pseudorandomized trial that compared 12 months of listening to notched music (with the tinnitus frequency removed) with placebo music. An additional group of patients, unable to participate in the music training due to time constraints, served as a monitoring control. Thirty-nine patients who met the strict inclusion criteria were recruited; the final group sizes after dropouts and exclusions were 8 in the target-notched music group, 8 in the placebo group, and 7 in the monitoring group. After 12 months of music (>12 h/wk), there was a significant decrease in tinnitus loudness (>30%) in the target-notched music group but not in the placebo or monitoring groups. Evoked activity to the tinnitus frequency, measured by magnetoencephalography, was also reduced in the primary auditory cortex of the target music group but not in the placebo or monitoring groups. Change in subjective tinnitus loudness and auditory-evoked response ratio correlated (r=0.69), suggesting an association between tinnitus loudness and reorganization of neural activity in the primary auditory cortex. Additional studies with a larger number of patients would be needed to evaluate this novel and practical treatment approach.

Stein et al. (2016) reported on a double-blinded and adequately powered RCT of notched music training in 100 participants with tonal tinnitus. There was no restriction for age or magnitude of hearing loss, and randomization was stratified for these factors. Participants provided their preferred music and were advised to listen for 2 successive hours a day for 3 months. The active treatment removed one-half octave around the tinnitus frequency while amplifying the edge frequency bands by 20 dB. The placebo treatment consisted of music with a moving notch. The primary outcomes were tinnitus perception (loudness, annoyance, awareness, handicap) measured with total VAS scores and tinnitus distress on the THQ. No effect was found for the primary outcome measures by intention-to-treat or per-protocol analysis, although the subscale of tinnitus loudness was reported to be reduced.
Sound Options Tinnitus Treatments

Li et al. (2016) reported on a double-blinded randomized evaluation of 12 months of at least 2 hours daily of classical music that was spectrally altered according to a proprietary computational model of the individual’s auditory threshold and tinnitus characteristics (e.g., tonal, ringing, hissing, primary frequency). Controls listened to unaltered classical music for the same period of time, and both groups were assessed at baseline and 2, 6, and 12 months after initial testing. The trial had a high loss to follow-up and was insufficiently powered, with only 34 (68%) of 50 patients completing the study. Three individuals dropped out before the baseline session, 4 dropped out during follow-up, and 9 were excluded due to noncompliance with the study requirements, which may have been related to the limited (6-hour) selection of music. At 12 months, the difference between groups, controlling for baseline scores and treatment adherence, was -17.41 on the THI (p=0.001), with an ES of 0.60. The percentage of participants who were at least moderately handicapped by tinnitus (THI score ≥38) decreased from 60% to 33% in the treatment group but remained unchanged (at 63% in the control group). Scores did not differ significantly between groups for TFI or Hospital Anxiety and Depression Scale scores. Interpretation of this study was limited by the high dropout and noncompliance rates.

Section Summary: Sound Therapy

Sound therapies include tinnitus masking and customized sound therapy. The evidence on tinnitus masking includes a number of RCTs and a systematic review. The RCTs, which have a medium- to high-risk of bias, have not shown evidence of the efficacy of masking therapy. Customized sound therapy has a solid neurophysiologic basis and the potential to substantially improve tinnitus symptoms; however, research in this area appears to be at an early stage. For example, the studies described use very different approaches for sound therapy, and it is not yet clear whether therapy is more effective when the training frequency is the same or adjacent to the tinnitus pitch, or when it is altered based on the tinnitus characteristics. A 2016 trial, double-blinded and adequately powered, found no benefit of notched music on the primary outcome measures of tinnitus perception and tinnitus distress, although the subscale score of tinnitus loudness was reported to be reduced. A benefit on tinnitus loudness but not tinnitus perception or tinnitus distress is unusual and would need to be corroborated in additional studies.

Combined Psychological and Sound Therapy for Treatment of Tinnitus

Clinical Context and Test Purpose

The purpose of combined psychological and sound therapy is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as standard therapy, in patients with tinnitus.

The question addressed in this evidence review is: Does nonpharmacologic therapies such as combined psychological and sound therapy improve the net health outcome for patients with tinnitus?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals with tinnitus.

Interventions

The therapy being considered is combined psychological and sound therapy.
Comparators
Comparators of interest include standard therapy including stress management and noise suppression therapy.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Commonly used self-report questionnaires include the THI, TQ, TFI, and the THQ as described above.

The existing literature evaluating combined psychological and sound therapy as a treatment for tinnitus has varying lengths of follow-up. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, a year of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Tinnitus Retraining Therapy
A 2011 systematic review identified 3 RCTs evaluating tinnitus retraining therapy. One trial did not find an improvement over an education-only intervention, and 2 provided low-quality evidence for the efficacy of an individualized multicomponent intervention that included tinnitus retraining. Additional controlled studies are described next.

The RCT by Westin et al. (2011; previously described) compared results of tinnitus retraining with ACT or waiting-list control in 64 patients with normal hearing. In this trial, tinnitus retraining was significantly less effective than ACT. The percentage of patients with reliable improvements was 54.5% in the ACT group and 20% in the tinnitus retraining group (p<0.04), with 10% of patients in the tinnitus retraining group showing deterioration during the trial. In the tinnitus retraining group, THI scores improved from 47.00 at baseline to 41.86 at 18 months, while waiting-list control score remained unchanged at 48.29. Interpretation of these findings is limited by the lack of a placebo-control group.

Bauer and Brozoski (2011) reported on a pseudorandomized study of tinnitus retraining therapy in 32 patients with normal to near-normal hearing (75% follow-up). Group assignment was balanced by tinnitus severity on the THI, Beck Depression Inventory scores, and sex. Participants were assigned to 8 hours of daily tinnitus retraining with three 1-hour sessions of individual counseling on tinnitus retraining over 18 months, or a control arm of 3 counseling sessions that included coping techniques and sham sound therapy. Participants in the control arm were provided with a sound device and told to increase use to 8 hours a day, although the device ramped to off in 30 minutes. Participants were evaluated at 6, 12, and 18 months with a computerized test battery of questionnaires and psychophysical procedures. The primary outcome measure was THI score. Secondary outcome measures were change in global tinnitus impact, subjective tinnitus loudness rating, and objective tinnitus loudness measured by a psychophysical matching procedure. THI score improved over the 18 months to
a similar extent for both the active and sham tinnitus retraining therapy groups. Subjective loudness was significantly reduced in the tinnitus retraining group compared with controls at 12 and 18 months (p=0.04), but there were no between-group differences in the rating of annoyance and distress.

Another pseudorandomized trial, from a Veterans Administration medical center, published in 2006, compared tinnitus masking with tinnitus retraining therapy. Following initial screening for tinnitus severity and motivation to comply with the 18-month study, 59 subjects were enrolled in the tinnitus masking condition (mean age, 61 years), and 64 were enrolled in tinnitus retraining (mean age, 59 years). Treatment included appointments with tinnitus specialists at 3, 6, 12, and 18 months to check the ear-level devices and to receive the group-specific counseling (about 4-5 hours total). At each visit, the subjects completed the THI, THQ, and Tinnitus Severity Index, and underwent tinnitus and audiological tests. Questionnaire results showed minor-to-modest improvements at the 3- and 6-month follow-ups for both treatment groups, slightly favoring the masking condition. After 12 months of treatment, medium ESs (0.57-0.66) were reported for the tinnitus retraining group and, after 18 months of treatment, major ESs (0.77-1.26) were obtained. Several confounding variables were reported, including differences in counseling between the 2 groups. This 2006 trial is the only trial that met selection criteria for a 2010 Cochrane review and a systematic review by Grewal et al. (2014).

Heidelberg Neuro-Music Therapy

Argstatter et al. (2015) reported on a 2-center, investigator-blinded RCT with 290 patients treated with neuro-music therapy or a single counseling session. Therapy was provided in 8 sessions, 50-minutes each, with 2 sessions a day. Each session consisted of 25 minutes of receptive (music-listening based) and 25 minutes of active (music-making) therapy. Active music therapy included resonance training and intonation training. The receptive music component offered coping mechanisms related to stress control along with a sound-based habituation procedure. Patients in both groups received a 50-minute individualized counseling session. The primary outcome was the change in TQ scores by intention-to-treat analysis at the conclusion of the therapy. Baseline TQ scores were similar in both groups (31.5 points for music therapy vs. 31.0 points for counseling). Both groups improved over time, with a greater reduction in TQ scores for music therapy (median, 11.2 points vs. 2.3 points). Clinically significant improvements were obtained in 66% of music therapy patients compared with 33% of patients in the active control group.

Multidisciplinary Therapy

Cima et al. (2012) reported on a large RCT of usual care versus a combination of approaches. Of the 741 untreated patients who were screened, 247 were assigned to usual care (e.g., hearing aids and up to 9 sessions with a social worker) and 245 were assigned to a specialized care protocol. Specialized care included 105 minutes of audiologic diagnostics, 30 minutes of audiologic rehabilitation (hearing aid or masking device), 120 minutes of CBT education, 60 minutes of intake psychology, 40 minutes of audiologic follow-up, and 24 hours of group behavioral and cognitive therapies. About a third of the patients in each group were lost to follow-up at 12 months. Compared with usual care, at 12 months, specialized care resulted in a modest improvement in health-related quality of life (ES=0.24), decrease in tinnitus severity (ES=0.43), and decrease in tinnitus impairment (ES=0.45).

Section Summary: Combined Psychological and Sound Therapy

The evidence on tinnitus retraining therapy consists of a number of small randomized or quasi-RCTs. Collectively, the literature does not show consistent improvements in the primary outcome measure (THI score) when tinnitus retraining therapy is compared with active or sham controls. For Heidelberg neuro-music therapy, there is a study that used an investigator-blinded RCT design and showed positive
short-term results following treatment. The durability of treatment is also unknown. A multidisciplinary therapy was shown to improve outcomes in a large RCT, but because the specialized care protocol was an intensive, multidisciplinary intervention, it is uncertain which of its components were associated with improvements in outcomes. It is also uncertain whether such an intensive treatment could be provided outside of the investigational setting.

Repetitive Transcranial Magnetic Stimulation for Treatment of Tinnitus

Clinical Context and Test Purpose

Transcranial magnetic stimulation has also been evaluated.

The question addressed in this evidence review is: Does nonpharmacologic therapies such as rTMS cranial magnetic stimulation improve the net health outcome for patients with tinnitus?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals with tinnitus.

Interventions

The therapy being considered is rTMS.

Comparators

Comparators of interest include standard therapy including stress management and noise suppression therapy.

Outcomes

The general outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Commonly used self-report questionnaires include the THI, TQ, TFI, and the THQ as described above.

The existing literature evaluating rTMS as a treatment for tinnitus has varying lengths of follow-up, ranging from 1, 2, 3, 13, and 26 weeks. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, 1, 2, 3, 13, and 26 weeks of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Soleimani et al. (2016) published a systematic review of 15 double-blind, randomized trials with sham controls on rTMS. Seven of these trials were included in a meta-analysis. The primary outcomes were the mean THI and TQ scores. The secondary outcomes of therapeutic success were defined as a reduction of 7 points on the THI (maximum, 100) or 5 points on the TQ (maximum, 84), but the percentage of patients who achieved therapeutic success was not reported. Mean difference in TQ
scores at 1 week after treatment was 3.42 (4 studies). Mean difference in THI scores between the TMS and sham groups was 6.71 at 1 month after treatment (4 studies, p<0.001) and 12.89 at 6 months after treatment (3 studies, p<0.001). The odds ratio at 1 month after treatment was 15.75 (p=0.004), although the sample size was small in the 3 included studies (range, 8-20 patients). A qualitative review of the 15 trials found significant benefit of rTMS in 9 and no significant effect in 6. There was significant heterogeneity in the population, target brain area, stimulation parameters, and length of follow-up.

The largest study included in the 2016 systematic review is that of Langguth et al. (2014).27 It combined data from 2 trials, in which 192 tinnitus patients were randomized to 1 of 3 different rTMS target areas or sham rTMS. The target areas were positron emission tomography-based neuro-navigated rTMS (n=48), rTMS over the left auditory cortex (n=48), or rTMS over both the left auditory cortex and left frontal cortex (n=48). The sham group (n=48) ran concurrently with the navigated rTMS group (between 2004 and 2006) while the other 2 groups ran concurrently between 2007 and 2009. There were no significant differences in mean TQ scores between groups, and no significant differences between groups in improvements in TQ scores over time. The percentage of treatment responders was significantly higher for left temporal rTMS (38%) and combined frontal and temporal rTMS (43%) compared with sham (6%). However, interpretation of these results is limited by the nonconcurrent sham controls.

Folmer et al. (2015) published results from a double-blind, sham-controlled randomized trial with 70 patients.28 Patients received 10 days of rTMS and had follow-up assessments at 1, 2, 4, 13, and 26 weeks after the last treatment session. Sixty-four patients were included in data analysis. Primary outcomes were change from baseline as measured by the TFI score and percentage of responders as measured by a 7-point improvement in TFI score. There were significant differences between groups in change from baseline at weeks 1, 2, and 26, but not at weeks 4 and 13. There was a significantly higher percentage of responders following active rTMS than following sham TMS immediately after treatment (56% vs. 22%, p<0.005) and at 26 weeks (66% vs. 38%), but not at weeks 1, 4, or 13. The benefit of rTMS increased over the 26 weeks of the trial, with a change in the mean TFI score of -5.2 immediately after treatment, increasing to -13.8 at 26 weeks. Additional study would be needed to corroborate these results and to evaluate the durability of the treatment.

Section Summary: Repetitive Transcranial Magnetic Stimulation

The evidence on rTMS for tinnitus includes a number of small to moderate-sized randomized, sham-controlled trials and systematic reviews. Results from the trials are mixed, with some not finding a statistically significant effect of rTMS on tinnitus severity. Larger controlled trials for this common condition and longer follow-up are needed to permit conclusions on the effect of this technology on health outcomes.

Electrical and Electromagnetic Stimulation for Treatment of Tinnitus

Clinical Context and Test Purpose

Electrical stimulation to the external ear has also been investigated and is based on the observation that electrical stimulation of the cochlea associated with a cochlear implant may be associated with a reduction in tinnitus. Invasive electrical stimulation of various cortical areas or nerves has also been evaluated.

The question addressed in this evidence review is: Does nonpharmacologic therapies such as electrical or electromagnetic stimulation improve the net health outcome for patients with tinnitus?

The following PICO was used to select literature to inform this review.
Patients
The relevant population of interest is individuals with tinnitus.

Interventions
The therapy being considered is electrical or electromagnetic stimulation.

Comparators
Comparators of interest include standard therapy including stress management and noise suppression therapy.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Commonly used self-report questionnaires include the THI, TQ, TFI, and the THQ as described above.

The existing literature evaluating electrical or electromagnetic stimulation as a treatment for tinnitus has varying lengths of follow-up. While studies described below all reported at least 1 outcome of interest, longer follow-up is necessary to fully observe outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Transcranial Direct Current Stimulation
Song et al. (2012) published a systematic review of transcranial direct current stimulation (tDCS) for the treatment of tinnitus. Six studies (3 sham-controlled randomized trials, 3 uncontrolled, open-label studies) were selected for the review. Overall, there was a 39.5% response rate (criteria for responder was not defined), with a mean reduction of tinnitus intensity of 13.5%. Meta-analysis of 2 RCTs showed a medium-to-large ES of 0.77. Pal et al (2015) reported on a trial involving 42 patients randomized to 5 days of sham stimulation or tDCS over the frontal and auditory cortices. They found no beneficial effect of tDCS on the primary (THI score) or secondary outcome measures in this adequately powered double-blind study.

A systematic review by Wang et al. (2017) examined the impact of tDCS on patients with tinnitus. Outcomes assessed included: loudness (as observed by a change in magnitude), distress as experienced by those with tinnitus, and THI scores. The results were the following: there was no observable benefit to tDCS in reducing hearing loudness (pooled standardized difference in means, 0.671; 95 CI, -0.089 to 1.437; p=0.83); and tinnitus-related distress decreased for those using tDCS (pooled standardized difference in means, 0.634; 95% CI, 0.021 to 1.247; p=.043). Only 3 studies dealt with changes in THI scores; however, no statistical heterogeneity could be determined. While this systematic review reported a reduction in tinnitus-related distress, further study is needed to evaluate tDCS as a treatment option for tinnitus.
A randomized double-blind clinical trial with case and control groups, the results of which were published by Abtahbi et al. (2018), was conducted in Al-Zahra Hospital in Isfahan between 2015 and 2016. In this trial, 51 patients who had tinnitus for at least 1 year were selected from outpatients visiting the clinic within this period. Inclusion criteria were patients on electrical stimulation prohibition, with Ménière’s disease, otosclerosis, chronic headache, and pulsatile tinnitus. Patients were randomized into 1 of 3, equal-size arms: anodal stimulation group, cathodal stimulation group, and control group. The subjects received 20-min current stimulation (2 mA). Of those with a significant difference between the stimulated states (anodal or cathodal) and/or control, 5 patients were selected to receive weekly transcranial electrical stimulation for 2 months, and their long-term recovery from tinnitus was investigated. The results showed no significant between-groups difference in mean scores of tinnitus before the intervention (p=.68); whereas, this difference was significant immediately after the intervention (p=.02) and 1h after it (p=.03). The mean score of tinnitus in the anodal stimulation group was significantly lower than the control, whereas, no significant difference was observed between the anodal and cathodal stimulation groups, and between the cathodal and control groups (p <.05). Findings also showed that the mean scores of tinnitus in 2 cathodal stimulation groups (p=.24) and control group (p=.62) were not significantly different at any point; whereas, this score was significantly different in the anodal group at all time points (p=.01).

Jacquemin et al. (2018) published the results of a cohort study consisting of both a retrospective and prospective aspect, aiming to compare 2tDCS electrode placements and to explore effects of high-definition (HD) tDCS by matched-pairs analyses. The total population (n=78) was split into 2 groups of 39 participants each. One group (n=39) received tDCS of the dorsolateral prefrontal cortex (DLPFC) and the other (n=39) received tDCS of the right supraorbital-left temporal area. Therapeutic effects were assessed with the TFI, aVAS for tinnitus loudness and the hyperacusis questionnaire filled out pretherapy, posttherapy, and follow-up. With a new group of patients and in a similar way, the effects of HD tDCS of the right DLPFC were assessed, with the TQ and the hospital anxiety and depression scale added. TFI total scores improved significantly after both tDCS and HD tDCS (DLPFC: P <.01; right supraorbital-left temporal area: P <.01; HD tDCS: P =.05). In 32% of the patients, a clinically significant improvement in TFI was observed. The 2 tDCS groups and the HD tDCS group showed no differences in the evolution of outcomes over time (TFI: P =.16; hyperacusis questionnaire: P =.85; VAS: P =.20). TDCS and HD tDCS resulted in a clinically significant improvement in TFI in 32% of the patients, with the 3 stimulation positions having similar results.

Invasive Neuromodulation

Deklerck et al. (2019) conducted a systematic review of studies on invasive neuromodulation for tinnitus. They identified 21 studies, which were mostly of low quality, with low sample sizes, lack of controls, or evaluating tinnitus as a secondary indication (e.g. the primary indication was movement disorders). Areas of stimulation included the caudate nucleus (2 reports), thalamus (2 reports), anterior cingulate (1 case report), dorsal cochlear nucleus (1 report), auditory cortex (7 reports), dorsolateral frontal cortex (1 case report), vestibulocochlear nerve (2 reports), C2 Dermatome (1 case report) and vagus nerve (4 reports). The greatest number of studies and the studies with the largest population evaluated stimulation of the auditory cortex and were published between 2006 and 2014. Studies published within the previous 2 years focused on the dorsal cochlear nucleus, vestibulocochlear nerve, and vagus nerve.

Direct Current Electrical Stimulation of the Ear

Two randomized trials of transcutaneous electrical stimulation, conducted in the 1980s, reported negative results. Dobie et al. (1986) reported on a randomized, double-blind, crossover trial in which 20
patients received an active or disconnected placebo device. Reduction in severity of tinnitus was reported in 2 (10%) of 20 patients with the active device and 4 (20%) of 20 patients with the placebo device. Fifteen (75%) of the 20 patients reported no effect with either device. Thedinger et al (1987) reported on a single-blind crossover trial of 30 patients who received active or placebo stimulation over 2 weeks. Only 2 (7%) of the 30 patients obtained a true-positive result.

Mielczarek and Olszewski (2014) reported on a placebo-controlled, nonrandomized trial of DCS of the ear in 120 patients (184 ears) with tinnitus and sensorineural hearing loss. Directly after treatment, tinnitus improved in 37.8% of the active treatment group versus 30.8% of the control group (p=0.34). At 90 days, tinnitus had disappeared in 11.8% of patients in the active treatment group compared with 7.7% of controls.

Electromagnetic Energy

Ghossaini et al (2004) reported on a randomized, double-blind placebo-controlled trial of 37 patients who received placebo or electromagnetic energy treatment with a Diapulse device for 30 minutes, 3 times weekly for 1 month. Trialists found no significant changes in either group in pretreatment and posttreatment audiometric thresholds, THI scores, or tinnitus rating scores, and concluded that pulsed electromagnetic energy (at 27.12 MHz at 600 pulses/s) offered no benefit in the treatment of tinnitus.

A systematic review Soleimani (2016) included 15 studies and concluded on a significant effect of impact of repetitive rTMS on tinnitus. However, high variability in study design and reported outcomes lead authors to conclude the need for large-scale trials and replication studies.

Section Summary: Electrical and Electromagnetic Stimulation

The evidence on electrical and electromagnetic stimulation for the treatment of tinnitus includes sham-controlled randomized trials. The available evidence does not currently support the use of these treatments. A 2015 study, sham-controlled and adequately powered, found no benefit of tDCS. Studies have not shown a benefit for DCS of the ear. The evidence on electromagnetic energy includes a small RCT that found no benefit for the treatment of tinnitus. Research on invasive neuromodulation for the treatment of tinnitus is at an early stage.

Transmeatal Laser Irradiation

Clinical Context and Test Purpose

The purpose of transmeatal laser irradiation is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as standard therapy, in patients with tinnitus.

The question addressed in this evidence review is: Does nonpharmacologic therapies such as transmeatal laser irradiation improve the net health outcome for patients with tinnitus?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is individuals with tinnitus.

Interventions

The therapy being considered is transmeatal laser irradiation.

Comparators

Comparators of interest include standard therapy including stress management and noise suppression therapy.
Outcomes

The general outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Commonly used self-report questionnaires include the THI, TQ, TFI, and the THQ as described above.

The existing literature evaluating transmeatal laser irradiation as a treatment for tinnitus has varying lengths of follow-up. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:
1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess longer-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Review of Evidence

A number of randomized, double-blind placebo-controlled trials have examined transmeatal low-level laser therapy. Most were conducted outside of the United States and showed no efficacy. For example, transmeatal low-level laser was not more effective than placebo in a 2002 double-blind RCT with 60 patients, in a 2009 placebo-controlled, double-blind, randomized trial with 60 patients, a 2014 placebo-controlled, double-blind, randomized trial with 48 patients, or a 2015 placebo-controlled, double-blind, randomized trial with 66 patients.

Section Summary: Transmeatal Laser Irradiation

The evidence on transmeatal laser irradiation includes a number of double-blind RCTs, most of which showed no efficacy of this treatment.

Summary of Evidence

For individuals who have persistent, bothersome tinnitus who receive psychological coping therapy, the evidence includes randomized controlled trials (RCTs) and meta-analyses of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. These therapies are intended to reduce tinnitus impairment and improve health-related quality of life. Meta-analyses of a variety of cognitive and behavioral therapies have found improvements in global tinnitus severity and quality of life, even when tinnitus loudness is not affected. Other RCTs have reported that a self-help/Internet-based approach to cognitive and behavioral therapy or acceptance and commitment therapy may also improve coping skills. The evidence is sufficient to determine that the technology results in a meaningful improvement in health outcomes.

For individuals who have tinnitus who receive sound therapy, the evidence includes RCTs and a systematic review of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence on tinnitus masking includes RCTs and a systematic review of RCTs. The RCTs had medium- to high-risk of bias and did not show the efficacy of masking therapy. Research on customized sound therapy appears to be at an early stage. For example, the studies described the use of very different approaches for sound therapy, and it is not yet clear whether therapy...
is more effective when the training frequency is the same or adjacent to the tinnitus pitch. A 2016 trial, double-blinded and adequately powered, found no benefit of notched music on the primary outcome measures of tinnitus perception and tinnitus distress, although the subcomponent score of tinnitus loudness was reported to be reduced. A benefit on tinnitus loudness but not tinnitus perception or tinnitus distress is of uncertain clinical significance, may be spurious, and would need corroboration in additional studies. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive combined psychological and sound therapy, the evidence includes RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence on tinnitus retraining therapy consists of a number of small randomized or quasi-RCTs. Collectively, the literature does not show consistent improvements in the primary outcome measure (Tinnitus Handicap Inventory scores) when tinnitus retraining therapy is compared with active or sham controls. For Heidelberg neuro-music therapy, a trial has used an investigator-blinded RCT design and showed positive short-term results following treatment. However, the durability of treatment is also unknown. A large, multicenter RCT trial using an intensive, multidisciplinary intervention showed improvement in outcomes. However, it is uncertain whether the multiple intensive interventions used in this trial could be replicated outside of the investigational setting. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive transcranial magnetic stimulation, the evidence includes a number of small- to moderate-sized RCTs and systematic reviews. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Results from these studies are mixed, with some trials reporting a statistically significant effect of repetitive transcranial magnetic stimulation on tinnitus severity and others reporting no significant difference. Larger controlled trials with longer follow-up are needed for this common condition. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive electrical or electromagnetic stimulation, the evidence includes a number of sham-controlled randomized trials. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The available evidence does not currently support the use of these stimulation therapies. A 2015 sham-controlled study that was adequately powered found no benefit of transcranial direct current stimulation. Moreover, while a 2017 meta-analysis found some benefit for transcranial direct current stimulation, it was noted that further study would be needed to evaluate transcranial direct current stimulation as a treatment option. Studies have not shown a benefit for direct current electrical stimulation of the ear. The evidence on electromagnetic energy includes a small RCT, which found no benefit for the treatment of tinnitus. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have tinnitus who receive transmeatal laser irradiation, the evidence includes RCTs and crossover trials. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence for transmeatal laser irradiation includes a number of double-blind RCTs, most of which showed no treatment efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.
SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

International Federation of Clinical Neurophysiology

In 2017, the International Federation of Clinical Neurophysiology sponsored evidence-based guidelines on the use of transcranial direct current stimulation (tDCS).43 The guidelines did not recommend tDCS as a treatment for tinnitus because studies suggested anodal tDCS of the left temporoparietal cortex was probably ineffective (level B evidence). A lack of data precluded any recommendation on the use of tDCS of the left dorsolateral prefrontal cortex as therapy for chronic tinnitus.

American Academy of Otolaryngology – Head and Neck Surgeons

In 2014, the American Academy of Otolaryngology – Head and Neck Surgeons published evidence-based guidelines on tinnitus.44 Table 8 provides some of the Academy’s recommendations.

Table 8. Guidelines on Treatment of Tinnitus

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>SOR</th>
<th>GOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Clinicians must differentiate patients with bothersome tinnitus from patients with nonbothersome tinnitus”</td>
<td>Strong recommendation</td>
<td>B</td>
</tr>
<tr>
<td>“Clinicians should distinguish patients with bothersome tinnitus of recent onset from those with persistent symptoms (≥ 6 months) to prioritize intervention and facilitate discussion about natural history and follow-up care”</td>
<td>Recommendation</td>
<td>B</td>
</tr>
<tr>
<td>“Clinicians may recommend sound therapy to patients with persistent, bothersome tinnitus”</td>
<td>Option</td>
<td>C</td>
</tr>
<tr>
<td>“Clinicians should recommend cognitive behavioral therapy to patients with persistent, bothersome tinnitus”</td>
<td>Recommendation</td>
<td>A</td>
</tr>
<tr>
<td>“Clinicians should not routinely recommend antidepressants, anticonvulsants, anxiolytics, or intratympanic medications for a primary indication of treating persistent, bothersome tinnitus”</td>
<td>Recommendation against</td>
<td>B</td>
</tr>
<tr>
<td>“Clinicians should not recommend transcranial magnetic stimulation for the routine treatment of patients with persistent, bothersome tinnitus”</td>
<td>Recommendation against</td>
<td></td>
</tr>
</tbody>
</table>

GOE: grade of evidence; SOR: strength of recommendation.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

The Centers for Medicare & Medicaid Services had a longstanding national coverage determination for tinnitus masking, which was retired in 2014.45

Ongoing and Unpublished Clinical Trials

Some ongoing trials that might influence this review are listed in Table 9.

Table 9. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02438891</td>
<td>Evaluation of an Internet-based Sound and Cognitive Behavioral Therapy Course for Treatment for Tinnitus</td>
<td>200</td>
<td>Dec 2020</td>
</tr>
<tr>
<td>NCT04004260</td>
<td>Cognitive Behavior Therapy Based Self-help Delivered</td>
<td>160</td>
<td>Aug 2021</td>
</tr>
<tr>
<td>NCT Number</td>
<td>Trial Title</td>
<td>Enrollment</td>
<td>Status</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NCT03114878</td>
<td>Via the Internet for Tinnitus Sufferers: Efficacy Trial in the U.S. Population</td>
<td>166</td>
<td>Dec 2019 (recruiting)</td>
</tr>
<tr>
<td>NCT03754127</td>
<td>The Value of Eye Movement Desensitization Reprocessing in the Treatment of Tinnitus</td>
<td>100</td>
<td>September 30, 2021</td>
</tr>
<tr>
<td>NCT03511807</td>
<td>A Randomized Controlled HD-tDCS Trial: Effects on Tinnitus Severity and Cognition</td>
<td>100</td>
<td>January 2021</td>
</tr>
<tr>
<td>NCT00926237</td>
<td>Acoustic and Electrical Stimulation for the Treatment of Tinnitus</td>
<td>60</td>
<td>September 2020</td>
</tr>
<tr>
<td>NCT03544359</td>
<td>in Tinnitus</td>
<td>35</td>
<td>August 2021</td>
</tr>
<tr>
<td>NCT01177137</td>
<td>Unpublished Tinnitus Retraining Therapy Trial</td>
<td>151</td>
<td>Feb 2017 (completed)</td>
</tr>
<tr>
<td>NCT02653547</td>
<td>Influence of Treatment Duration and Stimulation Frequency on Repetitive Transcranial Magnetic Stimulation in Chronic Tinnitus</td>
<td>80</td>
<td>May 2018 (Completed)</td>
</tr>
<tr>
<td>NCT03022084</td>
<td>Clinical Trial of Sound-Based Versus Behavioral Therapy for Tinnitus</td>
<td>61</td>
<td>Jun 2019</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
* Denotes industry-sponsored or co-sponsored trial.

ESSENTIAL HEALTH BENEFITS

The Affordable Care Act (ACA) requires fully insured non-grandfathered individual and small group benefit plans to provide coverage for ten categories of Essential Health Benefits ("EHBs"), whether the benefit plans are offered through an Exchange or not. States can define EHBs for their respective state.

States vary on how they define the term small group. In Idaho, a small group employer is defined as an employer with at least two but no more than fifty eligible employees on the first day of the plan or contract year, the majority of whom are employed in Idaho. Large group employers, whether they are self-funded or fully insured, are not required to offer EHBs, but may voluntarily offer them.

The Affordable Care Act requires any benefit plan offering EHBs to remove all dollar limits for EHBs.

REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>92625</td>
<td>Assessment of tinnitus (includes pitch, loudness matching, and masking)</td>
</tr>
<tr>
<td></td>
<td>0552T</td>
<td>Low-level laser therapy, dynamic photonic and dynamic thermokinetic energies, provided by a physician or other qualified health care professional</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S8948</td>
<td>Application of a modality (requiring constant provider attendance) to one or more areas; low level laser; each 15 minutes</td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td>H93.11-H93.19</td>
<td>Tinnitus code range</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td></td>
<td>ICD-10-PCS codes are only used for inpatient services. There are no specific ICD-10-PCS codes for these procedures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place of Service</td>
<td>Physician’s Office</td>
</tr>
</tbody>
</table>

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/22/14</td>
<td>Replace policy</td>
<td>Policy updated with literature review through April 3, 2014; references 1, 5, and 28 added; policy statement unchanged.</td>
</tr>
<tr>
<td>05/21/15</td>
<td>Replace policy</td>
<td>Policy updated with literature review through April 21, 2015; references 5, 11, 22, 27, 38, 42-43, and 46 added; policy statements unchanged.</td>
</tr>
<tr>
<td>03/10/16</td>
<td>Replace policy</td>
<td>Policy updated with literature review through December 10, 2015; references 14, 24-26, and 28 added; some references removed. Policy statement reordered and “surgical” added to the note on topics that the policy does not address.</td>
</tr>
</tbody>
</table>
MP 8.01.39
Treatment of Tinnitus

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/24/17</td>
<td>Replace policy</td>
<td>Policy updated with literature review through December 21, 2016; references 9, 17-18, and 40 added. Psychological coping therapy may be considered medically necessary for persistent and bothersome tinnitus. Combined psychological and sound therapy added to the investigational policy statement. Botulinum toxin is addressed in evidence review 5.01.05 (botulinum toxin).</td>
</tr>
<tr>
<td>02/26/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 05/30/2018. Policy updated with literature review through December 11, 2017; references 10, 32, and 41 added. The medically necessary statement revised to define psychological coping therapy; biofeedback added to the investigational statement.</td>
</tr>
<tr>
<td>02/21/19</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 02/21/2019. Policy updated with literature review through January 11, 2019; references 3, and 35-36 added. Policy statements unchanged.</td>
</tr>
<tr>
<td>02/19/20</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 02/19/2020. Policy updated with literature review through December 20, 2019; references added. Policy statements unchanged.</td>
</tr>
</tbody>
</table>