Endovascular Therapies for Extracranial Vertebral Artery Disease

DISCLAIMER/INSTRUCTIONS FOR USE

Medical Policy provides general guidance for applying Blue Cross of Idaho benefit plans (for purposes of Medical Policy, the terms “benefit plan” and “member contract” are used interchangeably). Coverage decisions must reference the member specific benefit plan document. The terms of the member specific benefit plan document may be different than the standard benefit plan upon which this Medical Policy is based. If there is a conflict between a member specific benefit plan and the Blue Cross of Idaho’s standard benefit plan, the member specific benefit plan supersedes this Medical Policy. Any person applying this Medical Policy must identify member eligibility, the member specific benefit plan, and any related policies or guidelines prior to applying this Medical Policy. Blue Cross of Idaho Medical Policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the member specific benefit plan coverage. Blue Cross of Idaho reserves the sole discretionary right to modify all its Policies and Guidelines at any time. This Medical Policy does not constitute medical advice.

POLICY

Endovascular therapy, including percutaneous transluminal angioplasty with or without stenting, is considered investigational for the management of extracranial vertebral artery disease.

POLICY GUIDELINES

The extracranial vertebral artery is considered to be segments V1 to V3 of the vertebral artery from its origin at the subclavian artery until it crosses the dura mater.

BENEFIT APPLICATION

BLUECARD/NATIONAL ACCOUNT ISSUES

State or federal mandates (eg, Federal Employee Program) may dictate that certain U.S. Food and Drug Administration–approved devices, drugs, or biologics may not be considered investigational, and thus these devices may be assessed only by their medical necessity.

BACKGROUND

Vertebrobasilar Circulation Ischemia

Ischemia of the vertebrobasilar or posterior circulation accounts for about 20% of all strokes. Posterior circulation strokes may arise from occlusion of the innominate and subclavian arteries, the extracranial vertebral arteries, or the intracranial vertebral, basilar, or posterior cerebral arteries. Compared with carotid artery disease, relatively little is known about the true prevalence of specific causes of posterior circulation strokes, particularly the prevalence of vertebral artery disease. In a report from a stroke
 registry, Gulli et al (2013) estimated that, in 9% of cases, posterior circulation strokes are due to stenosis of the proximal vertebral artery. Patients who experience strokes or transient ischemic attacks of the vertebrobasilar circulation face a 25% to 35% risk of stroke within the subsequent 5 years. In particular, the presence of vertebral artery stenosis increases the 90-day risk of recurrent stroke by about 4-fold.

Relevant Clinical Anatomy and Pathophysiology

Large artery disease of the posterior circulation may be due to atherosclerosis (stenosis), embolism, dissection, or aneurysms. In about a third of cases, posterior circulation strokes are due to stenosis of the extracranial vertebral arteries or the intracranial vertebral, basilar, and posterior cerebral arteries. The proximal portion of the vertebral artery in the neck is the most common location of atherosclerotic stenosis in the posterior circulation. Dissection of the extracranial or intracranial vertebral arteries may also cause posterior circulation ischemia. By contrast, posterior cerebral artery ischemic events are more likely to be secondary to embolism from more proximal vessels.

The vertebral artery is divided into four segments, V1 through V4, of which segments V1, V2, and V3 are extracranial. V1 originates at the subclavian artery and extends to the C5 or C6 vertebrae; V2 crosses the bony canal of the transverse foramina from C2 to C5; V3 starts as the artery exits the transverse foramina at C2 and ends as the vessel crosses the dura mater and becomes an intracranial vessel. The most proximal segment (V1) is the most common location for atherosclerotic occlusive disease to occur, while arterial dissections are most likely to involve the extracranial vertebral artery just before the vessel crosses the dura mater. Compared with the carotid circulation, the vertebral artery system is more likely to be associated with anatomic variants, including a unilateral artery.

Atherosclerotic disease of the vertebral artery is associated with conventional risk factors for cerebrovascular disease. However, risk factors and the underlying pathophysiology of vertebral artery dissection and aneurysms differ. Extracranial vertebral artery aneurysms and dissections are most often secondary to trauma, particularly those with excessive rotation, distraction, or flexion/extension, or iatrogenic injury, such as during cervical spine surgeries. Spontaneous vertebral artery dissections are rare, and in many cases are associated with connective tissue disorders, including Ehlers-Danlos syndrome type IV, Marfan syndrome, autosomal dominant polycystic kidney disease, and osteogenesis imperfecta type I.2

Management of Extracranial Vertebral Artery Disease

The optimal management of occlusive extracranial vertebral artery disease is not well-defined. Medical treatment with antiplatelet or anticoagulant medications is a mainstay of therapy to reduce stroke risk. Medical therapy also typically involves risk reduction for classical cardiovascular risk factors. However, no randomized trials have compared specific antiplatelet or anticoagulant regimens.

Surgical revascularization may be used for vertebral artery atherosclerotic disease, but open surgical repair is considered technically challenging due to poor access to the vessel origin. Surgical repair may involve vertebral endarterectomy, bypass grafting, or transposition of the vertebral artery, usually to the common or internal carotid artery. Moderately sized, single-center case series of surgical vertebral artery repair from 2012 and 2013 have reported overall survival rates of 91% and 77% at 3 and 6 years postoperatively, respectively, and arterial patency rates of 80% after 1 year of follow-up.3,4 Surgical revascularization may be used when symptomatic vertebral artery stenosis is not responsive to medical therapy, particularly when bilateral vertebral artery stenosis is present or when unilateral stenosis is present in the presence of an occluded or hypoplastic contralateral vertebral artery. Surgical revascularization may also be considered in patients with concomitant symptomatic carotid and vertebral disease who do not have relief from vertebrobasilar ischemia after carotid revascularization.
The management of extracranial vertebral artery aneurysms or dissections is controversial due to uncertainty about the risk of thromboembolic events associated with aneurysms and dissections. Antiplatelet therapy is typically used; surgical repair, which may include vertebral bypass, external carotid autograft, and vertebral artery transposition to the internal carotid artery, or endovascular treatment with stent placement or coil embolization, may also be used.

Given the technical difficulties related to surgically accessing the extracranial vertebral artery, endovascular therapies have been investigated for extracranial vertebral artery disease. Endovascular therapy may consist of percutaneous transluminal angioplasty, with or without stent implantation.

Regulatory Status

Currently, no endovascular therapies have been approved by the U.S. Food and Drug Administration (FDA) specifically for treatment of extracranial vertebral artery disease.

Various stents, approved for use in the carotid or coronary circulation, have been used for extracranial vertebral artery disease. These stents may be self- or balloon-expandable.

Two devices have been approved by the FDA through the humanitarian device exemption process for intracranial atherosclerotic disease. This form of the FDA approval is available for devices used to treat conditions with an incidence of 4000 or less per year; the FDA only requires data showing "probable safety and effectiveness." Devices with their labeled indications are as follows:

1. Neurolink System® (Guidant). "The Neurolink system is indicated for the treatment of patients with recurrent intracranial stroke attributable to atherosclerotic disease refractory to medical therapy in intracranial vessels ranging from 2.5 to 4.5 mm in diameter with ≥50% stenosis and that are accessible to the stent system."

2. Wingspan™ Stent System (Boston Scientific). "The Wingspan Stent System with Gateway PTA [percutaneous transluminal angioplasty] Balloon Catheter is indicated for use in improving cerebral artery lumen diameter in patients with intracranial atherosclerotic disease, refractory to medical therapy, in intracranial vessels with ≥50% stenosis that are accessible to the system."

RATIONALE

This evidence review was created in February 2015 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through March 6, 2019.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The RCT is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and
long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Angioplasty with or Without Stenting for Extracranial Vertebral Artery Stenosis

Clinical Context and Therapy Purpose

The purpose of percutaneous transluminal angioplasty (PTA) with or without stent implantation in patients who have extracranial vertebral artery stenosis is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does PTA with or without stent implantation improve the net health outcome in patients with extracranial vertebral artery stenosis?

The following PICOs were used to select literature to inform this review.

Patients

The relevant population of interest are patients with extracranial vertebral artery stenosis.

Interventions

The therapy being considered is PTA with or without stent implantation.

Comparators

The following therapies are currently being used to make decisions about PTA with or without stent implantation; medical treatment with antiplatelet or anticoagulant medications is a mainstay of therapy to reduce stroke risk. Medical therapy also typically involves risk reduction for classical cardiovascular risk factors. The optimal management of occlusive extracranial vertebral artery disease is not well-defined.

Outcomes

The general outcomes of interest are overall survival (OS), symptoms, morbid events, treatment-related mortality, and treatment-related morbidity.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

Studies with duplicative or overlapping populations were excluded.

The evidence base for the efficacy of endovascular interventions for vertebral artery stenosis consists of a large number of case series, most of which are small and retrospective. A small number of controlled trials have been published, which is the emphasis for this review.

Systematic Reviews

Several systematic reviews of published studies were identified. These systematic reviews were published prior to the Vertebral Artery Ischaemia Stenting Trial (VIST) and the Vertebral Artery Stenting
Trial (VAST), which are described in the Randomized Controlled Trials section. Meta-analysis of the Stenting and Aggressive Medical Management of Preventing Recurrent stroke in Intracranial Stenosis trial, VAST, and VIST showed no advantage for stenting/angioplasty compared with medical therapy alone.

Lattanzi et al (2018) conducted a systematic review and meta-analysis of 4 RCTs of endovascular treatment compared to medical treatment in patients with symptomatic vertebral artery stenosis, including VAST and VIST. Consistent with previous systematic reviews, the researchers found no overall effect of endovascular treatment on any primary or secondary outcome, including any stroke, any vertebrobasilar territory stroke, ischemic stroke, transient ischemic attack (TIA), myocardial infarction, vascular death, and the composite vascular outcome either within or after 30 days.

Randomized Controlled Trials

The VIST trial is the largest RCT published to date comparing stenting with medical therapy in patients who had symptomatic vertebral artery disease. Enrollment was originally planned for 1302 patients, but was stopped after 182 participants entered due to slow recruitment and the end of funding. Patients with symptomatic extracranial or intracranial vertebral artery stenosis and vertebrobasilar transient ischemic attack or stroke in the previous three months were randomized to vertebral artery stenting plus best medical therapy or best medical therapy alone. Of the 91 patients randomized to stenting, 33% did not undergo the procedure. The primary endpoint of fatal or nonfatal stroke occurred in 5 patients in the stent group and 12 in the medical management group (hazard ratio, 0.40; 95% confidence interval, 0.14 to 1.13; p=0.08 by intention-to-treat analysis). Although this trial found no benefit of stenting, it was underpowered and lacked the precision to exclude a benefit from stenting.

VAST was a multicenter phase 2 trial that included 115 patients who had transient ischemic attack or minor stroke attributed to vertebral artery stenosis. Randomization to stenting plus medical therapy or medical therapy was stratified by center and level of stenosis; 83.5% of patients had extracranial lesions and the rest had intracranial lesions. Stent selection was by surgeon preference. The primary outcome was the composite of vascular death, stroke, or myocardial infarction within 30 days. Patients were followed yearly by telephone. The median follow-up was 3.0 years (range, 1.3-4.1 years. Endovascular therapy plus best medical therapy was not superior to best medical therapy alone in this trial. The primary outcome occurred in 3 (5%) of 57 patients (95% confidence interval, 0% to 11%) in the stenting group and 1 (2%) of 58 patients (95% confidence interval, 0% to 5%) in the medical treatment group. During follow-up, the composite primary outcome occurred in 11 (19%) patients in the stenting group and in 10 (17%) patients in the medical therapy group. The periprocedural risk of a major vascular event in the stenting group was 5%.

Noncomparative Studies

A large number of noncomparative studies, most often enroll few patients, have described outcomes for patients treated with endovascular therapies for extracranial vertebral artery disease. Some cohort studies reporting prospectively collected complication and restenosis rates are shown in Table 1.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Population</th>
<th>FU</th>
<th>Main Results</th>
<th>ISR Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kikuchi et al (2014)</td>
<td>Retrospective review of prospectively collected data</td>
<td>404 patients from registry treated with endovascular therapy</td>
<td>30 d</td>
<td>Postprocedural morbidity: 2.0% Postprocedural mortality: 0.3%</td>
<td>Not reported</td>
</tr>
<tr>
<td>Sun et al</td>
<td>Retrospective</td>
<td>188 patients with</td>
<td>16.5</td>
<td>Technical success rate: 21.2%</td>
<td></td>
</tr>
</tbody>
</table>
Study | **Study Design** | **Population** | **FU** | **Main Results** | **ISR Rate**
---|---|---|---|---|---
(2015) | review of prospectively collected data | posterior circulation TIA or stroke and mRS score ≤2 | 100%
Mohammadian et al (2013) | Prospective interventional study | 206 patients with clinical signs of vertebral occlusion (239 treated lesions, 202 extracranial) | 13.15 mo* | Technical success rate: 100%.
Hatano et al (2011) | Retrospective review of prospectively collected data | 117 patients (108 symptomatic, 9 asymptomatic) | 48 mo* | Technical success rate: 99%
---|---|---|---|---|---
FU: follow-up; ISR: in-stent restenosis; mRS: modified Rankin Scale; TIA: transient ischemic attack.
* Mean value.

Section Summary: Angioplasty With or Without Stenting for Extracranial Vertebral Artery Stenosis
The evidence on the overall efficacy of endovascular therapies for extracranial vertebral artery stenosis includes a phase 3 and a phase 2 RCT that compared endovascular therapy with best medical therapy alone for vertebral artery stenosis. These trials found no advantage of endovascular intervention over best medical therapy alone, with a periprocedural adverse event rate of 5% for the invasive procedures in the VAST trial. Evidence from noncomparative studies has indicated that vertebral artery stenting can be performed with high rates of technical success and low periprocedural morbidity and mortality, and that vessel patency can be achieved in a high percentage of cases. However, long-term follow-up has demonstrated high rates of in-stent stenosis.

Angioplasty With Stenting for Extracranial Vertebral Artery Aneurysms, Dissections, and Arteriovenous Fistula(e)
Clinical Context and Therapy Purpose
The purpose of PTA with stent implantation in patients who have extracranial vertebral artery aneurysms, dissections, and AV fistula(e) is to provide a treatment option that is an alternative to or an improvement on existing therapies.
The question addressed in this evidence review is: Does PTA with stent implantation improve the net health outcome in patients with extracranial vertebral artery aneurysms, dissections, and AV fistula(e)?
The following PICOs were used to select literature to inform this review.
Patients
The relevant population of interest are patients with extracranial vertebral artery aneurysms, dissections, and AV fistula(e).

Interventions

The therapy being considered is PTA with stent implantation.

Comparators

The following therapies and practices are currently being used to make decisions about PTA with stent implantation: continued clinical observation, medical therapy and surgical repair. The management of extracranial vertebral artery aneurysms or dissections is controversial due to uncertainty about the risk of thromboembolic events associated with aneurysms and dissections. Antiplatelet therapy is typically used; surgical repair, which may include vertebral bypass, external carotid autograft, and vertebral artery transposition to the internal carotid artery, or endovascular treatment with stent placement or coil embolization, may also be used.

Outcomes

The general outcomes of interest are OS, symptoms, morbid events, treatment-related mortality, and treatment-related morbidity.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;

b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

Studies with duplicative or overlapping populations were excluded.

A smaller body of literature has addressed the use of endovascular procedures for extracranial vertebral artery aneurysms, dissections, and AV fistula(e). These lesions most commonly occur after trauma or iatrogenic injury. Because aneurysms, dissections, and AV fistulae may coexist in the same vessel, studies reporting outcomes for endovascular treatment of these conditions are discussed together. The available literature consists entirely of case reports, case series, and a systematic review of case series.

Systematic Reviews

Pham et al (2011) conducted a systematic review of studies evaluating endovascular stenting for extracranial carotid and vertebral artery dissections. Eight studies of extracranial vertebral artery stenting with 10 patients (12 vessels) were included. Of the 10 patients included, 70% had associated pseudoaneurysms and 20% had bilateral lesions. Most dissections (60%) were traumatic in etiology, while 20% were spontaneous and 20% were iatrogenic. The indications for stenting were failure of medical management in 40% (defined as a new ischemic event, progression of initial symptoms, or demonstration of an enlarging pseudoaneurysm despite adequate anticoagulation or antiplatelet treatment), contraindication to anticoagulation in 20%, and/or severity of dissection hemodynamics in 60%. No stent-related complications or mortalities were reported in any study. One dissection-related death was reported, although stenting was considered technically successful.

Case Series and Reports
Since the publication of the Pham et al (2011) systematic review, additional case series on the use of endovascular therapies for extracranial vertebral artery dissections have been published.

Badve et al (2014) retrospectively compared the clinical characteristics of patients who had vertebrobasilar dissections with and without aneurysmal dissection treated at a single institution from 2002 to 2010. Thirty patients were identified, 7 with aneurysmal dissections (one of which was extracranial) and 23 with nonaneurysmal dissections (10 of which were extracranial, 12 of which were combined intracranial/extracranial). Patients were treated with antiplatelet agents (aspirin or clopidogrel; n=8), anticoagulation with warfarin (n=13), or neurointerventional procedures (n=6). One patient in the nonaneurysmal dissection group treated with aspirin died.

The use of endovascular therapy for extracranial vertebral artery aneurysms and AV fistulae is similarly limited to small case series and reports. In an early report, Horowitz et al (1996) described a left-sided vertebral artery pseudoaneurysm with dissection between the vessel media and adventitia at the C7 vertebra that was treated with a balloon-expandable stent. Follow-up angiography three months postprocedure showed no filling of the pseudoaneurysm and normal patency of the parent artery. Felber et al (2004) reported on outcomes from endovascular treatment with stent grafts of 11 patients who had aneurysms or AV fistulae of craniovascular arteries, 2 of whom were treated for extracranial vertebral artery disorders with coronary stents (1 aneurysm, 1 traumatic AV fistula). The procedure was technically successful in both subjects, without complications. At follow-up (5 years and 14 months postprocedure in the aneurysm and fistula patients, respectively), the target vessel was patent without stenosis. Herrera et al (2008) reported on outcomes for a single-center series of 18 traumatic vertebral artery injuries, including 16 AV fistulae (7 of which had an associated pseudoaneurysm) and 2 isolated pseudoaneurysms, treated with endovascular therapy. Endovascular therapy consisted of balloon occlusion of the parent vessel and AV fistula in 12 (66.6%) patients, coil embolization in 2 (11.1%) patients, and detachable balloon and coil embolization, balloon occlusion, and stent delivery with coil and n-butyl cyanoacrylate embolization of a AV fistulae each in 1 (5.5% each) patient. Angiography immediately after endovascular treatment demonstrated complete occlusion in 16 (88.9%) patients and partial occlusion in 2 (11.1%) patients. Seventeen (94.5%) patients had complete resolution of symptoms.

Other case reports have described successful use of endovascular treatment with stenting for iatrogenic vertebral artery pseudoaneurysms, iatrogenic vertebral artery AV fistula, extracranial vertebral artery aneurysm with an unknown cause, and extracranial vertebral artery aneurysm with a cervical vertebral AV fistula.

Section Summary: Angioplasty With Stenting for Extracranial Vertebral Artery Aneurysms, Dissections, and AV Fistula(e)

The evidence on use of endovascular therapies for the treatment of extracranial vertebral artery dissections, aneurysms, and AV fistula(e) consists of small case series and case reports. These reports and series have indicated that endovascular therapy for extracranial vertebral artery disorders other than stenosis is feasible and might be associated with favorable outcomes. However, given the lack of evidence comparing endovascular therapies with alternatives, the evidence is insufficient to draw conclusions about the efficacy of endovascular therapy for treating extracranial vertebral artery dissections, aneurysms, and AV fistula(e) vs existing alternative therapies.

Summary of Evidence

For individuals who have extracranial vertebral artery stenosis who receive PTA with or without stent implantation, the evidence includes RCTs and noncomparative studies. The relevant outcomes are OS,
symptoms, morbid events, and treatment-related mortality and morbidity. Two RCTs, the VIST and the VAST, found no advantage for endovascular intervention compared with best medical therapy alone. Evidence from noncomparative studies has shown that vertebral artery stenting can be performed with high rates of technical success and low periprocedural morbidity and mortality, and that vessel patency can be achieved in a high percentage of cases. However, long-term follow-up has demonstrated high rates of in-stent stenosis. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have extracranial vertebral artery aneurysm(s), dissection(s), or AV fistula(e) who receive PTA with stent implantation, the evidence includes small case series and reports. The relevant outcomes are OS, symptoms, morbid events, and treatment-related mortality and morbidity. The available evidence has indicated that endovascular therapy for extracranial vertebral artery disorders other than stenosis is feasible and may be associated with favorable outcomes. However, given the lack of data comparing endovascular therapies to alternatives, the evidence is insufficient to permit conclusions about the efficacy of endovascular therapy for extracranial vertebral artery aneurysms, dissections, or AV fistulae. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

American Heart Association and American Stroke Association

The American Heart Association and American Stroke Association (2014) issued joint guidelines on prevention of stroke in patients with stroke and transient ischemic attack, which made the following recommendations about treatment of extracranial vertebrobasilar disease (see Table 2).

Table 2. Guidelines on Stroke Prevention in Patients With Stroke and Transient Ischemic Attack

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Routine preventive therapy with emphasis on anti-thrombotic therapy, lipid lowering, BP control, and lifestyle optimization is recommended for all patients with recently symptomatic extracranial vertebral artery stenosis"</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>"Endovascular stenting of patients with extracranial vertebral stenosis may be considered when patients are having symptoms despite optimal medical treatment."</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>"Open surgical procedures, including vertebral endarterectomy and vertebral artery transposition, may be considered when patients are having symptoms despite optimal medical treatment."</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

BP: blood pressure; COR: class of recommendation; LOE: level of evidence.

American Stroke Association et al

In 2011, a multisociety task force issued guidelines on the management of extracranial vertebral and carotid artery disease, which made the following statements about catheter-based revascularization of extracranial vertebral artery disease: "Although angioplasty and stenting of the vertebral vessels are technically feasible, as for high-risk patients with carotid disease, there is insufficient evidence from randomized trials to demonstrate that endovascular management is superior to best medical management." No specific recommendations were made about endovascular therapies.

European Society for Vascular Surgery
The European Society for Vascular Surgery (2018) made the following recommendation: "Patients with recurrent vertebrobasilar territory symptoms (despite best medical therapy) and who have a a 50 to 99% extracranial vertebral artery stenosis may be considered for revascularisation." The recommendation was based on Level B evidence (data derived from a single randomized controlled trial or large non-randomized studies) and considered Class IIb (i.e., the usefulness/efficacy is less well established).

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
Centers for Medicare & Medicaid Services has a national coverage determination addressing the use of percutaneous transluminal angioplasty in the treatment of atherosclerotic obstructive lesions of the lower or the upper extremities (not including the head or neck vessels), of a single coronary artery, of renal arteries, and of arteriovenous dialysis fistulas and grafts. It also addresses the use of percutaneous transluminal angioplasty concurrent with carotid stent placement in Food and Drug Administration investigational device exemption clinical trials, in Food and Drug Administration-approved postapproval studies, and in patients at high-risk for carotid endarterectomy.

The national coverage determination states that all other indications for percutaneous transluminal angioplasty, with or without stenting, to treat obstructive lesions of the vertebral and cerebral arteries remain noncovered.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in April 2019 did not identify any ongoing or unpublished trials that would likely influence this review.

ESSENTIAL HEALTH BENEFITS
The Affordable Care Act (ACA) requires fully insured non-grandfathered individual and small group benefit plans to provide coverage for ten categories of Essential Health Benefits (“EHBs”), whether the benefit plans are offered through an Exchange or not. States can define EHBs for their respective state.

States vary on how they define the term small group. In Idaho, a small group employer is defined as an employer with at least two but no more than fifty eligible employees on the first day of the plan or contract year, the majority of whom are employed in Idaho. Large group employers, whether they are self-funded or fully insured, are not required to offer EHBs, but may voluntary offer them.

The Affordable Care Act requires any benefit plan offering EHBs to remove all dollar limits for EHBs.

REFERENCES

Endovascular Therapies for Extracranial Vertebral Artery Disease

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0075T</td>
<td>Transcatheter placement of extracranial vertebral artery stent(s), including radiologic supervision and interpretation, open or percutaneous; initial vessel</td>
</tr>
<tr>
<td></td>
<td>0076T</td>
<td>Transcatheter placement of extracranial vertebral artery stent(s), including radiologic supervision and interpretation, open or percutaneous; each additional vessel (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>36226</td>
<td>Selective catheter placement, vertebral artery, unilateral, with angiography of the ipsilateral vertebral circulation and all associated radiological supervision and interpretation, includes angiography of the cervicocerebral arch, when performed</td>
</tr>
<tr>
<td></td>
<td>36228</td>
<td>Selective catheter placement, each intracranial branch of the internal carotid or vertebral arteries, unilateral, with angiography of the selected vessel circulation and all associated radiological supervision and interpretation (eg, middle cerebral artery, posterior inferior cerebellar artery) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>HCPCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td></td>
<td>Investigational for all relevant diagnoses</td>
</tr>
<tr>
<td></td>
<td>I65.01-I65.09</td>
<td>Occlusion and stenosis of vertebral artery code range</td>
</tr>
<tr>
<td></td>
<td>I72.6</td>
<td>Aneurysm of vertebral artery</td>
</tr>
</tbody>
</table>
Type of service
- Surgery

Place of service
- Inpatient/Outpatient

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/12/15</td>
<td>New policy – Add to Surgery section</td>
<td>Policy created with literature review through January 6, 2015. Endovascular therapy for extracranial vertebral artery disease considered investigational.</td>
</tr>
<tr>
<td>05/21/15</td>
<td>Replace policy – coding correction</td>
<td>ICD-10-PCS coding for insertion corrected</td>
</tr>
<tr>
<td>05/19/16</td>
<td>Replace policy</td>
<td>Policy updated with literature review through March 28, 2016; reference 5 added and some references removed. Policy statement unchanged.</td>
</tr>
<tr>
<td>06/01/17</td>
<td>Replace policy</td>
<td>Policy updated with literature review through March 23, 2017; no references added. Policy statement unchanged.</td>
</tr>
<tr>
<td>05/30/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted. Policy updated with literature review through March 5, 2018; reference 6 added; some references removed. Policy statement unchanged.</td>
</tr>
<tr>
<td>05/16/19</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 05/16/2019. Policy updated with literature review through March 6, 2019; References added. Policy statement unchanged.</td>
</tr>
</tbody>
</table>