Radioimmunoscinctigraphy (Monoclonal Antibody Imaging) With Indium 111 Capromab Pendetide for Prostate Cancer

DISCLAIMER

Our medical policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.

POLICY

Radioimmunoscinctigraphy using indium 111 capromab pendetide (ProstaScint®) is considered investigational for the evaluation and management of individuals with prostate cancer.

POLICY GUIDELINES

None.

BENEFIT APPLICATION

BLUECARD/NATIONAL ACCOUNT ISSUES

State or federal mandates (e.g., Federal Employee Program) may dictate that certain U.S. Food and Drug Administration–approved devices, drugs, or biologics may not be considered investigational, and thus these devices may be assessed only by their medical necessity.

BACKGROUND

Radioimmunoscinctigraphy is an imaging modality that uses radiolabeled monoclonal antibodies to target specific tissue types. Monoclonal antibodies that react with specific cellular antigens are conjugated with a radiolabeled isotope. The labeled antibody-isotope conjugate is then injected into the patient and allowed to localize to the target over a 2- to 7-day period. The patient then undergoes imaging with a nuclear medicine gamma camera, and radioisotope counts are analyzed. Imaging can be performed with planar techniques or by using single-photon emission computed tomography.

REGULATORY STATUS

In 1996, indium 111 capromab pendetide (ProstaScint®) (also referred to as CYT-356), which targets an intracellular binding site on prostate-specific membrane antigen, and was approved by the U.S. Food and Drug Administration through the biologics license application process for use as a “diagnosing imaging agent in newly-diagnosed patients with biopsy-proven prostate cancer, thought to be clinically-localized after standard diagnostic evaluation ... who are at high-risk for pelvic lymph node metastases...
Radioimmunoscintigraphy (Monoclonal Antibody Imaging) With Indium 111 Capromab Pendetide for Prostate Cancer

[It] is also indicated ... in post-prostatectomy patients with a rising PSA [prostate-specific antigen] and a negative or equivocal standard metastatic evaluation in whom there is a high clinical suspicion of occult metastatic disease." Other monoclonal antibodies, directed at extracellular prostate-specific membrane antigen binding sites, are also under development.

RATIONALE

This evidence review was created in December 2002 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through July 20, 2017. This review was informed by a 1998 TEC Assessment.

Radioimmunoscintigraphy (RIS) may be considered for use in a number of clinical indications. For this evidence review, we consider 2 clinical situations:

- As part of the pretreatment workup for the staging of prostate cancer. In this situation, the value of RIS is in detecting distant metastases not evident on other imaging studies, because detection of occult metastases is likely to alter treatment recommendations.
- In patients who have received curative treatment, but present with biochemical failure (i.e., a rising prostate-specific antigen [PSA]) without definite disease on standard imaging studies. In this situation, differentiating between local and distant recurrence is important because local recurrence may be treated with salvage radiotherapy, while distant recurrence is usually treated with androgen deprivation therapy.

STAGING BEFORE CURATIVE TREATMENT

Based on the 1998 TEC Assessment of RIS, sensitivity in detecting tumors in the pelvic lymph nodes ranged from 50% to 75% and specificity ranged from 72% to 92.6%. Two pooled data from the studies reviewed in the TEC Assessment produced an estimated 61% positive predictive value. If positive RIS results were used to exclude a patient from receiving potentially curative therapy (i.e., radical prostatectomy), then 38% of patients might be harmed by inappropriately withholding the potentially curative treatment. A pooled negative predictive value of 73% have suggested that if RIS played a key role in determining that pelvic lymph nodes were clear of the tumor before radical prostatectomy, then 26.7% of patients with a negative RIS scan and truly positive lymph nodes might receive ineffective surgery. Also, there is debate over a potential survival benefit with prostatectomy in the setting of positive lymph nodes. Nevertheless, regarding evaluating the pelvic nodes, the positive predictive values and negative predictive values were not sufficiently high to avoid pelvic lymph node dissection when necessary to determine patient management.

Since the 1998 TEC Assessment, reports have addressed the role of RIS in evaluating pelvic lymph node staging. Some of them appear in multiple publications, and population studies may overlap with results from multicenter studies. Moreover, the diagnostic accuracy of RIS for evaluating pelvic lymph nodes did not improve substantially over time.

Additional reports have used predictive modeling or cross-sectional correlation analysis to explore the value of RIS results in predicting the extent of disease compared with other factors (e.g., PSA level, Gleason score, clinical stage of disease). Some of these are mentioned but are not the focus of this review.

In 2011, Reiter et al published a retrospective review of 197 patients who had both RIS and histopathology available at a single institution over a 4-month period. For detection of positive lymph nodes, the sensitivity of RIS was 60.0% (95% confidence interval [CI], 14.7% to 94.7%) and the specificity was 97.4% (95% CI, 92.3% to 100%). The area under the receiver operating characteristic curve was...
0.787. Increasing Gleason score and clinical setting of pretreatment evaluation was predictive of a positive RIS scan.

These analyses would suggest that RIS provides additional and independent information that correlates with the extent of disease; however, the conclusions from these studies do not directly translate into how RIS results would be used to guide management that improves net health outcome. Without an understanding of diagnostic accuracy and how results would influence management, it is not possible to model potential effects on health outcomes. Thus, none of the reports identified to support the clinical effectiveness of using RIS to evaluate pelvic lymph nodes.

Section Summary: Staging Before Curative Treatment

For pretreatment staging before curative treatment, RIS has a modest sensitivity (estimated at 50% to 75%) and a moderate to high specificity (estimated at 72% to 93%). No studies, have demonstrated that use of RIS for pretreatment staging changes patient management or improves health outcomes.

BIOCHEMICAL FAILURE AFTER PROSTATECTOMY OR RADIOTHERAPY

Patients who experience a rising PSA following curative treatment for prostate cancer are considered to have a recurrence; however, the location of the recurrence is sometimes not evident for a period after a biochemical failure. Localized recurrence is typically treated with salvage radiotherapy, whereas distant recurrence (i.e., metastatic disease) is usually treated with androgen deprivation therapy.

There are limited data showing that the use of RIS to evaluate patients with recurrent or residual disease can detect additional sites of disease, resulting in management decisions different from usual care. Imaging evaluation may be useful in suspected recurrence due to rising PSA levels to localize recurrent tumor and to determine whether the recurrent tumor is local to the prostate area, involves distant sites, or both. When the residual or recurrent disease is only local, patients may undergo postoperative radiotherapy, while when the recurrence includes distant sites, hormonal therapy would be considered. Distant hematogenous metastasis from prostate cancer most frequently involves bone but can infrequently involve other soft tissue sites. Bone scan is generally considered more sensitive than RIS for detecting bone metastases. Positive RIS findings have been reported anecdotally in abnormalities other than prostate cancer, so biopsy confirmation of unexpected distant findings may be necessary to ensure proper patient management.

Available studies are generally retrospective, descriptive reports of patterns of RIS uptake in patients with suspected recurrence. These studies, however, do not provide consistent verification of disease status, and thus the false-positive and false-negative rates in RIS studies were not well-established. While some studies have reported the percentage of cases that had associated changes in management, it is frequently difficult to determine specifically how RIS results affected management and to determine whether these changes resulted in improved net health outcomes.

A retrospective study by Raj et al (2002) included 252 patients with biochemical failure following radical prostatectomy (PSA level, ≤0.4 ng/mL) that had RIS performed to localize recurrence. In this study, 72% of subjects had a positive scan. A localized (prostatic fossa only) uptake pattern was seen in 30.6%, regional uptake pattern (regional lymph nodes plus or minus prostatic fossa and no distant disease) in 42.8%, and distant uptake noted in 29.4%. This study did not report the proportion of subjects in whom patient management was altered by RIS findings. Only a minority of patients (<20%) had also received a computed tomography (CT) scan or bone scan showing positive findings, making comparisons across technologies subject to potential bias. A uniform reference standard was not applied in this study, and detailed follow-up was available for half of the patients (132/255). The study reported sensitivity and
specificity rates in a small subset of subjects (i.e., 95/252 [38%] subjects) who had some degree of verification of disease status. Reported sensitivity was 73%, and specificity was 53%. However, due to the select nature of the small subset analysis, these estimates were subject to potential verification bias and may not be considered valid measures of expected performance.

Sodee et al (2000) retrospectively analyzed 2290 RIS scans in 2154 patients with prostate cancer, either before or after treatment. This large multicenter study reported the rates of positive RIS scans in local, regional, and distant sites but did not provide detailed verification of results and, thus, sensitivity and specificity rates could not be determined. When the analysis was stratified by primary treatment (i.e., surgery, radiotherapy, or hormonal therapy), RIS showed uptake limited to extra-pelvic nodes in 8.5% to 15.1% of patients and uptake in both pelvic and extra-pelvic nodes in 22.1% to 33.2% of patients. Relatively few patients had also had CT scans (n=146). When CT was compared with RIS, CT did not detect pelvic or extra-pelvic nodes detected by RIS in 73% of CT cases. By contrast, in a separate study (1999) of 45 subjects, RIS did not perform as well as CT in detecting metastatic disease.

Kahn et al (1998) reported on results in 32 patients who received salvage pelvic radiation for suspected recurrence and had received RIS imaging. The authors reported that RIS had 50% sensitivity, 89% specificity, 78% positive predictive value, and 70% negative predictive value for detecting patients who would have tumor recurrence after irradiation. Thomas et al (2003) reported on the results of RIS in a case series of 30 men with recurrent prostate cancer treated with RT. They found no correlation between RIS results and tumor control, as assessed by serial PSA levels.

Liauw et al (2008) reported on 82 patients with adenocarcinoma of the prostate treated with salvage radiotherapy for an elevated PSA level after prostatectomy. The median PSA level before radiotherapy was 0.63 ng/mL. Of the 82 patients, 47 (57%) had a RIS (ProstaScint) scan before radiotherapy, which was used for both patient selection and target delineation. Patients with a RIS scan before radiotherapy had a lower preoperative PSA level (p=0.024) and shorter follow-up (p=0.022) than those without RIS. With a median follow-up of 44 months, the biochemical control rate was 56% at 3 years and 48% at 5 years. Margin status was the only factor associated with a biochemical control on univariate (p=0.005) and multivariate (p=0.004) analyses. Patients who had prostate bed–only uptake on RIS (n=38) did not have improved outcomes, with biochemical control rates of 51% at 3 years and 40% at 5 years. These data would support the conclusion that patients selected for treatment with RIS would not have better biochemical outcomes.

Nagda et al (2007) reported on a series of 58 patients who had ProstaScint scans as part of an assessment of rising PSA levels after prostatectomy who were then treated with prostate bed radiotherapy. The 4-year biochemical relapse-free survival (BRFS) rates for patients with negative ProstaScint scans (53%), positive in the prostate bed alone (45%), or positive scan findings elsewhere (74%) did not differ significantly (p=0.51). The capromab pendetide scan status did not affect BRFS. Those with a PSA level before radiotherapy of less than 1 ng/mL had improved BRFS (p=0.003). The authors concluded that the capromab pendetide scan had a low positive predictive value in patients with positive uptake elsewhere and the 4-year BRFS was similar to that for those who did not exhibit positive uptake elsewhere.

Proano et al (2006) reported on “early experience” outcomes among 44 patients with biochemical recurrence after radical prostatectomy who underwent a ProstaScint scan immediately before salvage radiotherapy. They noted improved prognosis (mean follow-up, 22 months) in patients who had a negative scan before radiotherapy but also noted that this finding was not necessarily independent of PSA level before radiotherapy.
Two other publications have raised questions about the accuracy (including sensitivity and specificity) of RIS, coregistered with CT, in imaging localized prostate cancer within the prostate gland and in detecting seminal vesicle invasion.\(^{26,27}\) In a 2014 prospective evaluation of 93 patients with recurrent prostate cancer, Schuster et al reported positron emission tomography–CT with the radiotracer anti-1-amino-3-fluorine 18-fluorocyclobutane-1-carboxylic acid was significantly better in detecting prostatic and extraprostatic prostate cancer recurrence than RIS single-photon emission computed tomography plus CT imaging.\(^{28}\)

Section Summary: Biochemical Failure after Prostatectomy or Radiotherapy
Numerous small case series have evaluated RIS in patients with biochemical failure after curative treatment and described rates of positivity for the local and distant disease. Thus, the studies do not permit accurate estimation of the false-positive and false-negative rate RIS. Moreover, no studies identified demonstrated an association between RIS findings and change in patient management or improved health outcomes in this population of patients.

SUMMARY OF EVIDENCE
For individuals who have prostate cancer and are undergoing staging before curative treatment who receive RIS with indium 111 capromab pendetide, the evidence includes diagnostic accuracy studies and a systematic review (TEC Assessment). Relevant outcomes are overall survival, disease-specific survival, test accuracy, and test validity. For pretreatment staging before curative treatment, the TEC Assessment found that RIS has a modest sensitivity, estimated at 50% to 75%, and a moderate to high specificity, estimated at 72% to 93%. No studies have demonstrated that the use of RIS for pretreatment staging changes patient management or improves health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have prostate cancer and have biochemical failure after curative treatment who receive RIS with indium 111 capromab pendetide, the evidence includes case series. Relevant outcomes are overall survival, disease-specific survival, test accuracy, and test validity. The available case series were generally retrospective, descriptive, and did not provide consistent verification of disease status. Thus, the studies do not permit accurate estimation of the false-positive and false-negative rates with RIS. There is a lack of published evidence demonstrating an association between RIS findings and change in patient management or health outcomes in this population of patients. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION
PRACTICE GUIDELINES AND POSITION STATEMENTS
National Comprehensive Cancer Network
The National Comprehensive Cancer Network guidelines for prostate cancer (v.2.2017) do not mention ProstaScint or radioimmunoscintrigraphy.\(^{29}\)

American College of Radiology
The American College of Radiology's 2011 Appropriateness Criteria rated the appropriateness of various imaging tests in men with rising prostate-specific antigen levels after prostatectomy or radiotherapy. Indium 111 capromab pendetide scans received a rating of 3 (defined as “usually not appropriate”).
Radioimmunoscintrigraphy (Monoclonal Antibody Imaging) With Indium 111 Capromab Pendetide for Prostate Cancer

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
Not applicable.

MEDICARE NATIONAL COVERAGE
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

ONGOING AND UNPUBLISHED CLINICAL TRIALS
A search of ClinicalTrials.gov in August 2017 did not identify any ongoing or unpublished trials that would likely influence this review.

REFERENCES
2. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Radioimmunoscintrigraphy for Prostate Cancer – Update. TEC Assessments. 1998;13;Tab 21. PMID

MP 6.01.37
Radioimmunoscntigraphy (Monoclonal Antibody Imaging) With Indium 111 Capromab Pendetide for Prostate Cancer

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>78800</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); limited area</td>
</tr>
<tr>
<td></td>
<td>78801</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); multiple areas</td>
</tr>
<tr>
<td></td>
<td>78802</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); whole body, single day imaging</td>
</tr>
<tr>
<td></td>
<td>78803</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); tomographic (SPECT)</td>
</tr>
<tr>
<td></td>
<td>78804</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); whole body, requiring 2 or more days imaging</td>
</tr>
<tr>
<td>HCPCS</td>
<td>A9507</td>
<td>Indium In-111 capromab pendetide, diagnostic, per study dose, up to 10 millicuries</td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td>C61</td>
<td>Malignant neoplasm prostate</td>
</tr>
<tr>
<td></td>
<td>Z45.46</td>
<td>Personal history malignant neoplasm prostate</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td>C72YYZZ</td>
<td>Tomographic nuclear medicine imaging lymphatic and hematologic system other radionuclide</td>
</tr>
<tr>
<td></td>
<td>C75YYZZ</td>
<td>Nonimaging nuclear medicine probe lymphatic and hematologic system other radionuclide</td>
</tr>
<tr>
<td></td>
<td>CT6YYZZ</td>
<td>Planar nuclear medicine imaging male reproductive system other radionuclide</td>
</tr>
<tr>
<td></td>
<td>CW1ZYZZ</td>
<td>Planar nuclear medicine imaging anatomical regions, other, other radionuclide</td>
</tr>
<tr>
<td>Type of Service</td>
<td>Radiology</td>
<td></td>
</tr>
<tr>
<td>Place of Service</td>
<td>Outpatient</td>
<td></td>
</tr>
</tbody>
</table>

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/09/14</td>
<td>Replace policy</td>
<td>Policy updated with literature review on December 12, 2013. Reference 27 added. Reference 29 updated. No change to policy statement.</td>
</tr>
<tr>
<td>01/15/15</td>
<td>Replace policy</td>
<td>Policy updated with literature review through December 18, 2014. Policy statement unchanged.</td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
<td>Details</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>09/28/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted. Policy updated with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>literature review through July 20, 2017; reference 1 added; reference 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>updated. Policy statement unchanged.</td>
</tr>
</tbody>
</table>