Circulating Tumor DNA and Circulating Tumor Cells for Cancer Management (Liquid Biopsy)

DISCLAIMER

Our medical policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.

POLICY

The use of circulating tumor DNA and/or circulating tumor cells is considered **investigational** for all indications reviewed herein (see Policy Guidelines).

POLICY GUIDELINES

This policy does not address the use of blood-based testing for “driver mutations” to select therapy in non-small-cell lung cancer or metastatic colorectal cancer, use of blood-based testing for use of liquid biopsy for detection or risk assessment of prostate cancer or the use of AR-V7 circulating tumor cells for metastatic prostate cancer.

CODING

There are no specific CPT codes for this type of testing. It would likely be reported using any existing CPT molecular pathology code(s) that is applicable, along with the unlisted molecular pathology procedure code.

Detection and quantification of circulating tumor cells would be reported using the following codes:

- 86152 Cell enumeration using immunologic selection and identification in fluid specimen (eg, circulating tumor cells in blood);
- 86153 physician interpretation and report, when required.

BENEFIT APPLICATION

BlueCard/National Account Issues

Some Plans may have contract or benefit exclusions for genetic testing.

BACKGROUND

Liquid biopsy refers to the analysis of circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) as methods of noninvasively characterizing tumors and tumor genome from the peripheral blood.

Circulating Tumor DNA

Normal and tumor cells release small fragments of DNA into the blood, which is referred to as cell-free
DNA. Cell-free DNA from nonmalignant cells is released by apoptosis. Most cell-free tumor DNA is derived from apoptotic and/or necrotic tumor cells, either from the primary tumor, metastases, or CTCs. Unlike apoptosis, necrosis is considered a pathologic process and generates larger DNA fragments due to incomplete and random digestion of genomic DNA. The length or integrity of the circulating DNA can potentially distinguish between apoptotic and necrotic origin. Circulating tumor DNA can be used for genomic characterization of the tumor.

Circulating Tumor Cells

Intact CTCs are released from a primary tumor and/or a metastatic site into the bloodstream. The half-life of a CTC in the bloodstream is short (1-2 hours), and CTCs are cleared through extravasation into secondary organs. Most assays detect CTCs through the use of surface epithelial markers such as EpCAM and cytokeratins. The primary reason for in detecting CTCs is prognostic, through quantification of circulating levels.

Detecting ctDNA and CTCs

Detection of ctDNA is challenging because ctDNA is diluted by nonmalignant circulating DNA and usually represents a small fraction (<1%) of total cell-free DNA. Therefore, more sensitive methods than the standard sequencing approaches (eg, Sanger sequencing) are needed.

Highly sensitive and specific methods have been developed to detect ctDNA, for both single nucleotide variants (eg BEAMing [which combines emulsion polymerase chain reaction with magnetic beads and flow cytometry] and digital polymerase chain reaction) and copy-number variants. Digital genomic technologies allow for enumeration of rare variants in complex mixtures of DNA.

Approaches to detecting ctDNA can be considered targeted, which includes the analysis of known genetic mutations from the primary tumor in a small set of frequently occurring driver mutations, which can impact therapy decisions or untargeted without knowledge of specific variants present in the primary tumor, and include array comparative genomic hybridization, next-generation sequencing, and whole exome and genome sequencing.

CTC assays usually start with an enrichment step that increases the concentration of CTCs, either by biologic properties (expression of protein markers) or physical properties (size, density, electric charge). CTCs can then be detected using immunologic, molecular, or functional assays.

Note that targeted therapy in non-small-cell lung cancer and metastatic colorectal cancer, use of liquid biopsy for detection or risk assessment of prostate cancer, and use of AR-V7 CTC liquid biopsy for metastatic prostate cancer are addressed in separate reviews.

Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of this test.

The CellSearch® System (Janssen Diagnostics, formerly Veridex) is the only FDA-approved device for monitoring patients with metastatic disease and CTCs. In 2004, the CellSearch® System was cleared by the FDA for marketing through the 510(k) process for monitoring metastatic breast cancer, in 2007 for monitoring metastatic colorectal cancer, and in 2008 for monitoring metastatic prostate cancer. The system uses automated instruments manufactured by Immunicon for sample preparation (CellTracks®
AutoPrep) and analysis (CellSpotter Analyzer®), together with supplies, reagents, and epithelial cell control kits manufactured by Veridex. FDA product code: NQI.

RATIONALE

This evidence review was created in May 2016 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through October 1, 2018.

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

This evidence review evaluates uses for liquid biopsies not addressed in other reviews. If a separate evidence review exists, then conclusions reached there supersede conclusions here. The main criterion for inclusion in this review is the limited evidence on the clinical validity. The use of liquid biopsy for non-small-cell lung cancer is addressed in 2.04.143. The use of liquid biopsy for metastatic colorectal cancer (CRC) will be addressed in 2.04.53 with an upcoming update. The use of liquid biopsy for detection or risk assessment of prostate cancer is addressed in 2.04.33. The use of AR-V7 CTC liquid biopsy for metastatic prostate cancer will be addressed in 2.04.111.

Selecting Treatment in Advanced Cancer

Clinical Context and Test Purpose

Treatment selection is informed by tumor type, grade, stage, patient performance status and preference, prior treatments, and the molecular characteristics of the tumor such as the presence of driver mutations. One purpose of liquid biopsy testing of patients who have advanced cancer is to inform a decision regarding treatment selection (eg, whether to select a targeted treatment or standard treatment).

The question addressed in this evidence review is: Does use of circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) testing to select treatment in patients with cancer to improve the net health outcome compared with standard tissue testing? Note that the use of a liquid biopsy to select therapy for non-small-cell lung cancer is addressed in 2.04.143, to select therapy for metastatic CRC is addressed in 2.04.53 and to select therapy in metastatic prostate cancer is addressed in 2.04.111.

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are patients with advanced cancer for whom the selection of treatment depends on molecular characterization of the tumor(s).

Interventions

The test being considered is liquid biopsy using either ctDNA or CTCs. Both targeted polymerase chain reaction-based assays and broad next-generation sequencing-based approaches are available. Patients
with negative liquid biopsy results should be reflexed to tumor biopsy testing if they are able to undergo tissue biopsy.

Comparators
For patients who are able to undergo a biopsy, molecular characterization of the tumor is performed using standard tissue biopsy samples. Patients unable to undergo a biopsy generally receive standard therapy.

Outcomes
Liquid biopsies are easier to obtain and less invasive than tissue biopsies. True-positive liquid biopsy test results lead to the initiation of appropriate treatment (e.g., targeted therapy) without a tissue biopsy. False-positive liquid biopsy test results lead to the initiation of inappropriate therapy, which could shorten progression-free survival.

In patients able to undergo a tissue biopsy, negative liquid biopsies reflex to tissue testing. In patients unable to undergo a tissue biopsy, a negative liquid biopsy result would not change empirical treatment. Therefore, health outcomes related to negative test results do not differ between liquid biopsy and tissue biopsy.

Timing
The timing of interest for survival outcomes varies by type of cancer.

Setting
The setting of interest is oncology care.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review, and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Circulating Tumor DNA
The American Society of Clinical Oncology and College of American Pathologists jointly convened an expert panel to review the current evidence on the use of ctDNA assays. The literature review included a search for publications on the use of ctDNA assays for solid tumors in March 2017 and covers several different indications for the use of liquid biopsy. The search identified 1338 references to which an additional 31 references were supplied by the expert panel. Seventy-seven articles were selected for inclusion. The summary findings are discussed in the following sections, by indication.

Much of the literature to date on the use of ctDNA to guide treatment selection is for non-small-cell lung cancer, which is addressed in 2.04.143 and metastatic CRC, which will be addressed in 2.04.53 and are not discussed here. Merker et al (2018) concluded that while a wide range of ctDNA assays have been developed to detect driver mutations, there is limited evidence of the clinical validity of ctDNA analysis in tumor types outside of lung cancer and CRC. Preliminary clinical studies of ctDNA assays for detection
of potentially targetable variants in other cancers such as \textit{BRAF} variants in melanoma3 and \textit{PIK3CA} and \textit{ESR1} variants in breast cancer were identified.4,5

\textbf{Circulating Tumor Cells}

In breast cancer, observations that estrogen receptor-positive tumors can harbor estrogen receptor-negative CTCs6,7 that overt distant metastases and CTCs can have discrepant human epidermal growth factor receptor 2 status compared with the primary tumor8,10 and that the programmed death-ligand 1 is frequently expressed on CTCs in patients with hormone receptor-positive, \textit{HER2}-negative breast cancer11 have suggested that trials investigating whether CTCs can be used to select targeted treatment are needed.

The clinical validity of each commercially available CTC test must be established independently.

\textbf{Clinically Useful}

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

\textbf{Circulating Tumor DNA}

\textbf{Direct Evidence}

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Merker et al (2018) concluded that no such trials have been reported for ctDNA tests.2

\textbf{Chain of Evidence}

To develop a chain of evidence or a decision model requires explication of the elements in the model and evidence that is sufficient to demonstrate each of the links in the chain of evidence or the validity of the assumptions in the decision model.

A chain of evidence for ctDNA tests could be established if the ctDNA test has high agreement with standard tissue testing (clinical validity) for identifying driver mutations and the standard tissue testing has proven clinical utility with high levels of evidence. A chain of evidence can also be demonstrated if the ctDNA test is able to detect driver mutations when standard methods cannot, and the information from the ctDNA test leads to management changes that improve outcomes.

The evidence is insufficient to demonstrate test performance for currently available ctDNA tests except for lung cancer (see 2.04.143); therefore, no inferences can be made about clinical utility.

\textbf{Circulating Tumor Cells}

\textbf{Direct Evidence}

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Trials of using CTCs to select treatment are ongoing (see Table 6 in Supplemental Information).
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

The evidence is insufficient to demonstrate test performance for currently available CTC tests; therefore, no inferences can be made about clinical utility.

Section Summary: Selecting Treatment in Advanced Cancer

Circulating Tumor DNA

For indications reviewed herein, there is no direct evidence that selecting targeted treatment using ctDNA improves the net health outcome compared with selecting targeted treatment using tumor tissue testing. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently. One commercially available test (OncoBEAM RAS CRC assay) has promising clinical validity data that needs replication. The evidence is insufficient to demonstrate test performance for currently available ctDNA tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Circulating Tumor Cells

For indications reviewed herein, there is no direct evidence that selecting targeted treatment using CTCs improves the net health outcome compared with selecting targeted treatment using tumor tissue testing. Trials are ongoing. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available CTC tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Monitoring Treatment Response in Cancer

Clinical Context and Test Purpose

Monitoring of treatment response in cancer may be performed using tissue biopsy or imaging methods. Another proposed purpose of liquid biopsy testing in patients who have advanced cancer is to monitor treatment response, which could allow for changing therapy before clinical progression and potentially improve outcomes.

The question addressed in this evidence review is: Does ctDNA or CTC testing to monitor treatment response in patients with cancer improve the net health outcome?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are patients who are being treated for cancer.

Interventions

The test being considered is liquid biopsy using either ctDNA or CTCs. For ctDNA tests, the best unit for quantifying DNA burden has not been established.²

Comparators

Standard monitoring methods for assessing treatment response are tissue biopsy or imaging methods

Outcomes

The outcome of primary interest is progression-free survival.
Timing
The timing of interest for survival outcomes varies by type of cancer.

Setting
The setting of interest is oncology care.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review, and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
Circulating Tumor DNA
Merker et al (2018) identified several proof-of-principle studies demonstrating correlations between changes in ctDNA levels and tumor response or outcomes as well as studies demonstrating that ctDNA can identify the emergence of resistant variants. However, they reported a lack of rigorous, prospective validation studies of ctDNA-based monitoring and concluded that clinical validity had not been established.

Circulating Tumor Cells
Systematic reviews and meta-analyses describing an association between CTCs and poor prognosis have been reported for metastatic breast cancer, CRC, hepatocellular cancer, prostate cancer, head and neck cancer, and melanoma.

The clinical validity of each commercially available CTC test must be established independently.

Clinically Useful
Circulating Tumor DNA
Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Merker et al (2018) concluded there is no evidence that changing treatment before clinical progression, at the time of ctDNA progression, improves patient outcomes.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

The evidence is insufficient to demonstrate test performance for currently available ctDNA tests for monitoring treatment response; therefore, no inferences can be made about clinical utility.

Circulating Tumor Cells
Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Smerage et al (2014) reported on the results of a randomized controlled trial of patients with metastatic breast cancer and persistently increased CTC levels to test whether changing chemotherapy after 1 cycle of first-line therapy could improve overall survival (OS; the primary study outcome). Patients who did not have increased CTC levels at baseline remained on initial therapy until progression (arm A), patients with initially increased CTC levels that decreased after 21 days of therapy remained on initial therapy (arm B), and patients with persistently increased CTC levels after 21 days of therapy were randomized to continue initial therapy (arm C1) or change to an alternative chemotherapy (arm C2). There were 595 eligible and evaluable patients, 276 (46%) of whom did not have increased CTC levels (arm A). Of patients with initially increased CTC levels, 31 (10%) were not retested, 165 were assigned to arm B, and 123 were randomized to arms C1 or C2. There was no difference in median OS between arms C1 (10.7 months) and C2 12.5 months; (p=0.98). CTC levels were strongly prognostic, with a median OS for arms A, B, and C (C1 and C2 combined) of 35 months, 23 months, and 13 months, respectively (p<0.001). This trial showed the prognostic significance of CTCs in patients with metastatic breast cancer receiving first-line chemotherapy, but also that there was no effect on OS if patients with persistently increased CTC levels after 21 days of first-line chemotherapy were switched to alternative cytotoxic therapy.

Trials demonstrating that use of CTCs to monitor treatment for the purpose of making treatment changes are needed to demonstrate clinical utility.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

The evidence is insufficient to demonstrate test performance for currently available CTC tests; therefore, no inferences can be made about clinical utility through a chain of evidence.

Section Summary: Monitoring Treatment Response in Cancer

Circulating Tumor DNA

For indications reviewed herein, there is no direct evidence that using ctDNA to monitor treatment response improves the net health outcome compared with standard methods. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available ctDNA tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Circulating Tumor Cells

For indications reviewed herein, there is no direct evidence that using CTCs to monitor treatment response improves the net health outcome compared with standard methods. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available CTC tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Predicting Risk of Relapse

Clinical Context and Test Purpose
Monitoring for relapse after curative therapy in patients with cancer may be performed using imaging methods and clinical examination. Another proposed purpose of liquid biopsy testing in patients who have cancer is to detect and monitor for residual tumor, which could lead to early treatment that would eradicate residual disease and potentially improve outcomes.

The question addressed in this evidence review is: Does ctDNA or CTC testing to predict the risk of relapse in patients with cancer improve the net health outcome?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are patients who have received curative treatment for cancer.

Interventions
The test being considered is liquid biopsy using either ctDNA or CTCs.

Comparators
Standard monitoring methods for detecting relapse are imaging methods and clinical examination.

Outcomes
The outcome of primary interest is progression-free survival.

Timing
The timing of interest for survival outcomes varies by type of cancer.

Setting
The setting of interest is oncology care.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review, and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid

Circulating Tumor DNA
Merker et al (2018) identified several proof-of-principle studies demonstrating an association between persistent detection of ctDNA after local therapy and high-risk of relapse. However, current studies are retrospective and have not systematically confirmed that ctDNA is being detected before the metastatic disease has developed. They concluded that the performance characteristics had not been established for any assays.

Circulating Tumor Cells
Rack et al (2014) published the results of a large multicenter study in which CTCs were analyzed in 2026 patients with early breast cancer before adjuvant chemotherapy and in 1492 patients after chemotherapy using the CellSearch System. After chemotherapy, 22% of patients were CTC-positive, and CTC positivity was negatively associated with prognosis.

Smaller studies demonstrating associations between persistent CTCs and relapse have been published in prostate cancer, CRC, bladder cancer, liver cancer, and esophageal cancer.
The clinical validity of each commercially available CTC test must be established independently.

Clinically Useful

The evidence is insufficient to demonstrate test performance for currently available ctDNA and CTC tests for predicting relapse; therefore, no inferences can be made about clinical utility.

Circulating Tumor DNA and Circulating Tumor Cells

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Merker et al (2018) concluded that there is no evidence that early treatment before relapse, based on changes in ctDNA, improves patient outcomes. Similarly, no trials were identified demonstrating that treatment before relapse based on changes in CTCs improves patient outcomes.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

A chain of evidence to demonstrate clinical utility requires an evidence-based management pathway. There is not an explicated, evidence-based management pathway for the use of ctDNA or CTCs to guide early treatment before relapse.

Section Summary: Predicting Risk of Relapse

Circulating Tumor DNA

For indications reviewed herein, there is no direct evidence that using ctDNA to predict the risk of relapse improves the net health outcome compared with standard methods. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available CTC tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Circulating Tumor Cells

For indications reviewed herein, there is no direct evidence that using CTCs to predict the risk of relapse improves the net health outcome compared with standard methods. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available CTC tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Screening for Cancer in Asymptomatic Individuals

Clinical Context and Test Purpose

It has also been proposed that liquid biopsies could be used to screen asymptomatic patients for early detection of cancer, which could allow for initiating treatment at an early stage, potentially improving outcomes.
The question addressed in this evidence review is: Does ctDNA or CTC testing to screen for cancer in asymptomatic individuals improve the net health outcome?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are asymptomatic individuals.

Interventions
The test being considered is liquid biopsy using either ctDNA or CTCs.

Comparators
Outcomes
The outcome of primary interest is progression-free survival.

Diagnosis of cancer that is not present or would not have become clinically important (false-positives and overdiagnosis) would lead to unnecessary treatment and treatment-related morbidity.

Timing
The timing of interest for survival outcomes varies by type of cancer.

Setting
The setting of interest is primary care or oncology care.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review, and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
Circulating Tumor DNA
Merker et al (2018) reported there is no evidence of clinical validity for the use of ctDNA in asymptomatic individuals.²

Circulating Tumor Cells
Systematic reviews with meta-analyses have evaluated the diagnostic accuracy of CTCs in patients with gastric and bladder/urothelial cancer.³³³ Reported sensitivity was low in both cancers (42% and 35%) overall. Sensitivity was lower in patients with early-stage cancer, suggesting that the test would not be useful as an initial screen.

The clinical validity of each commercially available CTC test must be established independently.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Circulating Tumor DNA and Circulating Tumor Cells
Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

To evaluate the utility of the tests for screening, guidelines would be needed to establish criteria for screening intervals and appropriate follow-up for positive tests. After such guidelines are established, studies demonstrating the liquid biopsy test performance as cancer screening test would be needed.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility. Also, a chain of evidence requires an evidence-based management pathway. There is not an explicated, evidence-based management pathway for the use of ctDNA or CTCs for the screening of asymptomatic patients.

The evidence is insufficient to demonstrate test performance for currently available ctDNA and CTC tests as a screening test for cancer; therefore, no inferences can be made about clinical utility through a chain of evidence.

Section Summary: Screening for Cancer in Asymptomatic Individuals

Circulating Tumor DNA

For indications reviewed herein, there is no direct evidence that using ctDNA to screen for cancer in asymptomatic individuals improves the net health outcome compared with standard methods. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available CTC tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Circulating Tumor Cells

For indications reviewed herein, there is no direct evidence that using CTCs to screen for cancer in asymptomatic individuals improves the net health outcome compared with standard methods. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. The evidence is insufficient to demonstrate test performance for currently available CTC tests that are reviewed herein; therefore, no inferences can be made about clinical utility through a chain of evidence.

Summary of Evidence

Circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) in peripheral blood, referred to as “liquid biopsy,” have several potential uses for guiding therapeutic decisions in patients with cancer or being screened for cancer. This evidence review evaluates uses for liquid biopsies not addressed in a separate review. If a separate evidence review exists, then conclusions reached there supersede conclusions here.

For individuals who have advanced cancer who receive testing of ctDNA to select targeted treatment, the evidence includes observational studies. The relevant outcomes are overall survival, disease-specific survival, test validity, morbid events, and medication use. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently, and these data are lacking, outside of lung and colorectal cancer, which are covered in a separate review. Published studies reporting clinical outcomes and/or clinical utility are...
lacking. The uncertainties concerning clinical validity and clinical utility preclude conclusions about whether variant analysis of ctDNA can replace variant analysis of tissue. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have advanced cancer who receive testing of CTCs to select targeted treatment, the evidence includes observational studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbid events, and medication use. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. Published studies reporting clinical outcomes and/or clinical utility are lacking. The uncertainties concerning clinical validity and clinical utility preclude conclusions about whether the use of CTCs can replace variant analysis of tissue. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have cancer who receive testing of ctDNA to monitor treatment response, the evidence includes observational studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbid events, and medication use. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently, and these data are lacking. Published studies reporting clinical outcomes and/or clinical utility are lacking. The uncertainties concerning clinical validity and clinical utility preclude conclusions about whether the use of ctDNA should be used to monitor treatment response. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have cancer who receive testing of CTCs to monitor treatment response, the evidence includes a randomized controlled trial, observational studies, and systematic reviews of observational studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbid events, and medication use. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. The available randomized controlled trial found no effect on overall survival when patients with persistently increased CTC levels after first-line chemotherapy were switched to an alternative cytotoxic therapy. Other studies reporting clinical outcomes and/or clinical utility are lacking. The uncertainties concerning clinical validity and clinical utility preclude conclusions about whether the use of CTCs should be used to monitor treatment response. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have received curative treatment for cancer who receive testing of ctDNA to predict the risk of relapse, the evidence includes observational studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbid events, and medication use. Given the breadth of methodologies available to assess ctDNA, the clinical validity of each commercially available test must be established independently, and these data are lacking. Published studies reporting clinical outcomes and/or clinical utility are lacking. The uncertainties concerning clinical validity and clinical utility preclude conclusions about whether the use of ctDNA should be used to predict relapse response. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have received curative treatment for cancer who receive testing of CTCs to predict the risk of relapse, the evidence includes observational studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, morbid events, and medication use. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. Published studies reporting clinical outcomes and/or clinical utility are lacking. The uncertainties
concerning clinical validity and clinical utility preclude conclusions about whether the use of CTCs should be used to predict relapse response. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic and at high-risk for cancer who receive testing of ctDNA to screen for cancer, no evidence was identified. The relevant outcomes are overall survival, disease-specific survival, test accuracy, and test validity. Published data on clinical validity and clinical utility are lacking. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic and at high risk for cancer who receive testing of CTCs to screen for cancer, the evidence includes observational studies. The relevant outcomes are overall survival, disease-specific survival, test accuracy, and test validity. Given the breadth of methodologies available to assess CTCs, the clinical validity of each commercially available test must be established independently, and these data are lacking. Published studies reporting clinical outcomes and/or clinical utility are lacking. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

National Comprehensive Cancer Network guidelines for breast cancer (v.3.2018) state that the use of circulating tumor cells in metastatic breast cancer is not yet included in algorithms for disease assessment and monitoring. The guidelines for melanoma (v.3.2018) reference papers on circulating tumor DNA in the discussion of molecular characteristics of metastatic disease with the statement, ‘A number of tests have been developed for detecting BRAF and KIT mutations common in metastatic melanoma. The sensitivity and accuracy of these tests vary, and improved assays are in development.’

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers. Palmetto GBA has issued a local noncoverage determination (L35071) for all circulating tumor cell assay.

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01710605</td>
<td>Randomized Trial to Evaluate the Medico-economic Interest of Taking Into Account Circulating Tumor Cells (CTC) to Determine the Kind of First Line Treatment for Metastatic, Hormone-receptors Positive, Breast Cancers.</td>
<td>800</td>
<td>Sep 2018 (ongoing)</td>
</tr>
<tr>
<td>NCT02140463</td>
<td>Next generation personalized therapy with plasma DNA Trial 2 in refractory solid tumors (The NEXT-2 Trial)</td>
<td>260</td>
<td>Dec 2018</td>
</tr>
</tbody>
</table>
Circulating Tumor DNA and Circulating Tumor Cells for Cancer Management (Liquid Biopsy)

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02035813</td>
<td>DETECT IV - A Prospective, Multicenter, Open-label, Phase II Study in Patients With HER2-negative Metastatic Breast Cancer and Persisting HER2-negative Circulating Tumor Cells (CTCs).</td>
<td>520</td>
<td>Dec 2019</td>
</tr>
<tr>
<td>NCT01619111</td>
<td>DETECT III - A Multicenter, Randomized, Phase III Study to Compare Standard Therapy Alone Versus Standard Therapy Plus Lapatinib in Patients With Initially HER2-negative Metastatic Breast Cancer and HER2-positive Circulating Tumor Cells</td>
<td>120</td>
<td>Mar 2020</td>
</tr>
<tr>
<td>NCT03182634</td>
<td>A Multiple Parallel Cohort, Multi-centre Phase IIa Trial Aiming to Provide Proof of Principle Efficacy for Designated Targeted Therapies in Patients With Advanced Breast Cancer Where the Targetable Mutation is Identified Through ctDNA</td>
<td>1000</td>
<td>Nov 2023</td>
</tr>
<tr>
<td>NCT02889978</td>
<td>The Circulating Cell-free Genome Atlas Study</td>
<td>15000</td>
<td>Mar 2024</td>
</tr>
<tr>
<td>NCT03079011</td>
<td>Randomized, Open Label, Multicentric Phase III Trial to Evaluate the Safety and Efficacy of Palbociclib in Combination With HT driven by ctDNA ESR1 Mutation Monitoring in ER+, HER2-negative Metastatic Breast Cancer Patients</td>
<td>800</td>
<td>Apr 2024</td>
</tr>
</tbody>
</table>

Unpublished

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01701050</td>
<td>COMETI Phase 2: Characterization of Circulating Tumor Cells (CTC) From Patients With Metastatic Breast Cancer Using the CTC-Endocrine Therapy Index</td>
<td>121</td>
<td>Nov 2016 (completed)</td>
</tr>
<tr>
<td>NCT02612350</td>
<td>Utility of Plasma Circulating Tumor DNA (ctDNA) in Asymptomatic Subjects for the Detection of Neoplastic Disease</td>
<td>1106</td>
<td>Aug 2017</td>
</tr>
<tr>
<td>NCT01349842</td>
<td>CirCe01 Study: Evaluation of the Use of Circulating Tumour Cells to Guide Chemotherapy From the 3rd Line of Chemotherapy for Metastatic Breast Cancer</td>
<td>265</td>
<td>Jan 2018</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>81161-81355; 81400-81409</td>
<td>Molecular pathology analyte testing code range</td>
</tr>
<tr>
<td></td>
<td>81479</td>
<td>Unlisted molecular pathology procedure</td>
</tr>
<tr>
<td></td>
<td>86152</td>
<td>Cell enumeration using immunologic selection and identification in fluid specimen (eg, circulating tumor cells in blood);</td>
</tr>
<tr>
<td></td>
<td>86153</td>
<td>physician interpretation and report, when required</td>
</tr>
<tr>
<td>HCPCS</td>
<td></td>
<td>Investigational for all relevant diagnoses</td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td>C00.0-C96.9</td>
<td>Malignant neoplasms code range</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td></td>
<td>Not applicable. ICD-10-PCS codes are only used for inpatient services. There are no ICD procedure codes for laboratory tests.</td>
</tr>
</tbody>
</table>

Type of Service

Place of Service
POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/19/16</td>
<td>Add to Medicine - Pathology/Laboratory section</td>
<td>Policy created with a literature review through March 10, 2016. Policy statement that the use of circulating tumor DNA and circulating tumor cells is considered investigational for all indications.</td>
</tr>
<tr>
<td>10/13/16</td>
<td>Replace policy</td>
<td>Language added to Policy Guidelines that policy does not apply to the use of blood-based testing for EGFR mutations.</td>
</tr>
<tr>
<td>08/30/17</td>
<td>Replace policy</td>
<td>BCI annual review; no change to policy.</td>
</tr>
<tr>
<td>05/30/18</td>
<td>Replace policy</td>
<td>Policy updated with a literature review through March 5, 2018. Rationale substantially rewritten. References 2-14, 16, 18, 22-24, 28-34, and 37 added. Clarifying edit to policy statement, add ‘or’ to the following sentence: “The use of circulating tumor DNA and/or circulating tumor cells...”</td>
</tr>
<tr>
<td>12/20/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 12/20/2018. Policy updated with a literature review through October 1, 2018, reference 15 added. Liquid biopsy for metastatic colorectal cancer was removed from 2.04.141 and will be added to 2.04.53 at the next update. Clarifying edit to policy statement, add ‘reviewed herein’ to stress that other indications are reviewed in separate policies.</td>
</tr>
</tbody>
</table>