DISCLAIMER/INSTRUCTIONS FOR USE

Medical Policy provides general guidance for applying Blue Cross of Idaho benefit plans (for purposes of Medical Policy, the terms “benefit plan” and “member contract” are used interchangeably). Coverage decisions must reference the member specific benefit plan document. The terms of the member specific benefit plan document may be different than the standard benefit plan upon which this Medical Policy is based. If there is a conflict between a member specific benefit plan and the Blue Cross of Idaho’s standard benefit plan, the member specific benefit plan supersedes this Medical Policy. Any person applying this Medical Policy must identify member eligibility, the member specific benefit plan, and any related policies or guidelines prior to applying this Medical Policy. Blue Cross of Idaho Medical Policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the member specific benefit plan coverage. Blue Cross of Idaho reserves the sole discretionary right to modify all its Policies and Guidelines at any time. This Medical Policy does not constitute medical advice.

POLICY

The use of the Presage ST2 Assay to evaluate the prognosis of patients diagnosed with chronic heart failure is considered investigational.

The use of the Presage ST2 Assay to guide management (eg, pharmacologic, device-based, exercise) of patients diagnosed with chronic heart failure is considered investigational.

The use of the Presage ST2 Assay in the post cardiac transplantation period, including but not limited to predicting prognosis and predicting acute cellular rejection, is considered investigational.

POLICY GUIDELINES

None.

BENEFIT APPLICATION

BLUECARD/NATIONAL ACCOUNT ISSUES

State or federal mandates (eg, Federal Employee Program) may dictate that certain U.S. Food and Drug Administration–approved devices, drugs, or biologics may not be considered investigational, and thus these devices may be assessed only by their medical necessity.

BACKGROUND

Heart Failure

Heart failure is a major cause of morbidity and mortality worldwide. The term heart failure refers to a complex clinical syndrome that impairs the heart’s ability to move blood through the circulatory
system. In the U. S., in 2011, an estimated 600000 individuals live with chronic heart failure. Heart failure is the leading cause of hospitalization among people older than age 65 years, with direct and indirect costs estimated at $37 billion annually in the U. S. Although survival has improved with treatment advances, absolute mortality rates of heart failure remain near 50% within 5 years of diagnosis.

Physiology
Heart failure can be caused by disorders of the pericardium, myocardium, endocardium, heart valves or great vessels, or metabolic abnormalities. Individuals with heart failure may present with a wide range of left ventricular (LV) anatomy and function. Some have normal LV size and preserved ejection fraction; others have severe LV dilatation and depressed ejection fraction. However, most patients present with key signs and symptoms secondary to congestion in the lungs from impaired LV myocardial function. They include dyspnea, orthopnea, and paroxysmal dyspnea. Other symptoms include weight gain due to fluid retention, fatigue, weakness, and exercise intolerance secondary to diminished cardiac output.

Diagnosis
Initial evaluation of a patient with suspected heart failure is typically based on clinical history, physical examination, and chest radiograph. Because people with heart failure may present with nonspecific signs and symptoms (eg, dyspnea), accurate diagnosis can be challenging. Therefore, noninvasive imaging (eg, echocardiography, radionuclide angiography) are used to quantify pump function of the heart, thus identifying or excluding heart failure in patients with characteristic signs and symptoms. These tests can also be used to assess prognosis by determining the severity of the underlying cardiac dysfunction. However, clinical assessment and noninvasive imaging can be limited in accurately evaluating patients with heart failure because symptoms and signs can poorly correlate with objective methods of assessing cardiac dysfunction. Thus, invasive procedures (eg, cardiac angiography, catheterization) are used in select patients with presumed heart failure symptoms to determine the etiology (ie, ischemic vs nonischemic) and physiologic characteristics of the condition.

Treatment
Patients with heart failure may be treated using a number of interventions. Lifestyle factors such as the restriction of salt and fluid intake, monitoring for increased weight, and structured exercise programs are beneficial components of self-management. A variety of medications are available to treat heart failure. They include diuretics (eg, furosemide, hydrochlorothiazide, spironolactone), angiotensin-converting enzyme inhibitors (eg, captopril, enalapril, lisinopril), angiotensin receptor blockers (eg, losartan, valsartan, candesartan), b-blockers (eg, carvedilol, metoprolol succinate), and vasodilators (eg, hydralazine, isosorbide dinitrate). Numerous device-based therapies also are available. Implantable cardioverter defibrillators reduce mortality in patients with an increased risk of sudden cardiac death. Cardiac resynchronization therapy improves symptoms and reduces mortality for patients who have disordered LV conduction evidenced by a wide QRS complex on electrocardiogram. Ventricular assist devices are indicated for patients with end-stage heart failure who have failed all other therapies and are also used as a bridge to cardiac transplantation in select patients.

Heart Failure Biomarkers
Because of limitations inherent in standard clinical assessments of patients with heart failure, a number of objective disease biomarkers have been investigated to diagnose and assess heart failure patient prognosis, with the additional goal of using biomarkers to guide therapy. They include a number of proteins, peptides, or other small molecules whose production and release into circulation reflect the
activation of remodeling and neurohormonal pathways that lead to LV impairment. Examples include B-type natriuretic peptide (BNP), its analogue N-terminal pro-B-type natriuretic peptide (NT-proBNP), troponin T and I, renin, angiotensin, arginine vasopressin, C-reactive protein, and norepinephrine.,\textemdash14151617 BNP and NT-proBNP are considered the reference standards for biomarkers in assessing heart failure patients. They have had substantial impact on the standard of care for diagnosis of heart failure and are included in the recommendations of all major medical societies, including the American College of Cardiology Foundation and American Heart Association,14 European Society of Cardiology,12 and the Heart Failure Society of America.5 Although natriuretic peptide levels are not 100% specific for the clinical diagnosis of heart failure, elevated BNP or NT-proBNP levels in the presence of clinical signs and symptoms reliably identify the presence of structural heart disease due to remodeling and heightened risk for adverse events. Natriuretic peptides also can help in determining prognosis of heart failure patients, with elevated blood levels portending poorer prognosis.

In addition to diagnosing and assessing prognosis of heart failure patients, blood levels of BNP or NT-proBNP have been proposed as an aid for managing patients diagnosed with chronic heart failure.1314151617 Levels of either biomarker rise in response to myocardial damage and LV remodeling, whereas they tend to fall as drug therapy ameliorates symptoms of heart failure. Evidence from a large number of randomized controlled trials that have compared BNP- or NT-proBNP-guided therapy with clinically guided adjustment of pharmacologic treatment of patients who had chronic heart failure has been assessed in recent systematic reviews and meta-analyses. However, these analyses have not consistently reported a benefit for BNP-guided management. The largest meta-analysis to date is a patient-level meta-analysis by Savarese et al (2013) that evaluated 2686 patients from 12 randomized controlled trials.5 This meta-analysis showed that NT-proBNP-guided management was associated with significant reductions in all-cause mortality and heart failure-related hospitalization compared with clinically guided treatment. Although BNP-guided management in this meta-analysis was not associated with significant reductions in these parameters, differences in patient numbers and characteristics may explain the discrepancy. A second patient-level meta-analysis, conducted by Troughton et al (2014), included 11 randomized controlled trials with 2000 patients randomized to natriuretic peptide-guided pharmacologic therapy or usual care.10 The results showed that, among patients 75 years of age or younger with chronic heart failure, most of whom had impaired left ventricular ejection fraction, natriuretic peptide-guided therapy was associated with significant reductions in all-cause mortality compared with clinically guided therapy. Natriuretic-guided therapy also was associated with significant reductions in hospitalization due to heart failure or cardiovascular disease.

Suppression of Tumorigenicity-2 Protein Biomarker

A protein biomarker, ST2, has elicited interest as a potential aid to predict prognosis and manage therapy of heart failure.11121314151617 This protein is a member of the interleukin-1 (IL-1) receptor family. It is found as a transmembrane isoform (ST2L) and a soluble isoform (sST2), both of which have circulating IL-33 as their primary ligand. ST2 is a unique biomarker that has pluripotent effects in vivo. Thus, binding between IL-33 and ST2L is believed to have an immunomodulatory function via T-helper type 2 lymphocytes and was initially described in the context of cell proliferation, inflammatory states, and autoimmune diseases.18 However, the IL-33/ST2L signaling cascade is also strongly induced through mechanical strain of cardiac fibroblasts or cardiomyocytes. The net result is mitigation of adverse cardiac remodeling and myocardial fibrosis, which are key processes in the development of heart failure.15 The soluble isoform of ST2 is produced by lung epithelial cells and cardiomyocytes, and is secreted into circulation in response to exogenous stimuli, mechanical stress, and cellular stretch. This form of ST2 binds to circulating IL-33, acting as a "decoy," thus inhibiting the IL-33-associated
antiremodeling effects of the IL-33/ST2L signaling pathway. Thus, on a biologic level, IL-33/ST2L signaling plays a role in modulating the balance of inflammation and neurohormonal activation, and is viewed as pivotal for protection from myocardial remodeling, whereas sST2 is viewed as attenuating this protection. In the clinic, blood concentrations of sST2 appear to correlate closely with adverse cardiac structure and functional changes consistent with remodeling in patients with heart failure, including abnormalities in filling pressures, chamber size, and systolic and diastolic function.6,13,15

An enzyme-linked immunosorbent-based assay is commercially available for determining sST2 blood levels (Presage ST2 Assay).16 The manufacturer claims a limit of detection of 1.8 ng/mL for sST2, and a limit of quantification of 2.4 ng/mL, as determined according to Clinical and Laboratory Standards Institute guideline EP-17-A. A study by Mueller and Dieplinger (2013) reported a limit of detection of 2.0 ng/mL for sST2.16 In the same study, the assay had a within-run coefficient of variation of 2.5% and a total coefficient of variation less than 4.0%; demonstrated linearity within the dynamic range of the assay calibration curve; and exhibited no relevant interference or cross-reactivity.

The ST2 biomarker is not intended to diagnosis heart failure, because it is a relatively nonspecific marker that is increased in many other disparate conditions that may be associated with acute or chronic manifestations of heart failure.15,16 Although the natriuretic peptides (BNP, NT-proBNP) reflect different physiologic aspects of heart failure compared with sST2, they are considered the reference standard biomarkers when used with clinical findings to diagnose, prognosticate, and manage heart failure and as such are the comparator to sST2.

Regulatory Status

In 2011, the Presage® ST2 Assay kit (Critical Diagnostics) was cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process for use with clinical evaluation as an aid in assessing the prognosis of patients diagnosed with chronic heart failure. The assay had already received Conformite Europeenne Mark in January 2011. The Presage® ST2 Assay kit is provided in a microplate configuration. The kit contains a ready-to-use 96-well microtiter plate coated with mouse monoclonal antihuman sST2 antibodies; a recombinant human sST2 standard calibrator (lyophilized); a standard diluent; an anti-ST2 biotinylated antibody reagent (mouse monoclonal antihuman sST2 antibodies) in phosphate-buffered saline; a sample diluent; a tracer concentrate and tracer diluent; a wash concentrate; a tetramethylbenzidine reagent; a stop solution; and 2 levels of controls provided in a sealed, lyophilized format (high and low control).

RATIONALE

This evidence review was created in January 2015 and has been updated with searches of the MEDLINE database. The original review also included a search of EMBASE. The most recent literature update was performed through March 4, 2019.

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.
Use of Soluble Suppression of Tumorigenicity-2 Levels in Chronic Heart Failure Patients

Clinical Context and Test Purpose
The purpose of the sST2 assay is to determine prognosis and/or to guide management in patients with chronic heart failure as an alternative to or an improvement on existing tests and clinical assessment.

The question addressed in this evidence review is: Do sST2 assays determine prognosis and/or guide treatment in patients with chronic heart failure and improve net health outcomes?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with chronic heart failure.

Interventions
The test being considered is sST2 assay to determine prognosis and/or to guide management. Elevated sST2 levels are purported to predict higher risk of poor outcomes.

Comparators
Comparators of interest include standard prognostic markers, including B-type natriuretic peptide levels and clinical assessment.

Outcomes
The general outcomes of interest are overall survival (OS), quality of life, and hospitalizations. Follow-up of 6-12 months would be appropriate to assess quality of life outcomes.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Study Selection Criteria
For the evaluation of clinical validity of sST2 testing, methodologically credible studies were selected using the following principles:

For the evaluation of clinical validity of the tests, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described
- Included a validation cohort separate from development cohort.
A number of clinical studies in which sST2 blood levels were determined using the Presage ST2 Assay have reported that there is an association between ST2 levels and adverse outcomes in patients diagnosed with chronic heart failure. A substantial body of biomarker evidence has been reported retrospectively from subsets of patients enrolled in randomized controlled trials (RCTs) of heart failure interventions. These RCTs include Val-HeFT (Valsartan Heart Failure Trial); HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training); CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure); and PROTECT (ProBNP Outpatient Tailored Chronic Heart Failure study). Although patients in these RCTs were well-characterized and generally well-matched between study arms, the trials were neither intended nor designed specifically to evaluate biomarkers as risk predictors. At present, no prospectively gathered evidence is available from an RCT in which sST2 levels were compared with levels of a B-type natriuretic peptide (BNP or N-terminal pro B-type natriuretic peptide [NT-proBNP]) to predict risk for adverse outcomes among well-defined cohorts of patients with diagnosed chronic heart failure. Key results of larger individual studies are summarized in Table 4.

Findings of studies on the prognostic value of sST2 for chronic heart failure were pooled in a meta-analysis by Aimo et al (2017). The meta-analysis selected seven studies, including post hoc analyses of RCTs, and calculated the association between the Presage ST2 Assay and health outcomes. A pooled analysis of 7 studies found that sST2 was a statistically significant predictor of overall mortality (hazard ratio [HR], 1.75; 95% confidence interval [CI], 1.37 to 2.22). Moreover, a pooled analysis of 5 studies found that sST2 was a significant predictor of cardiovascular mortality (HR=1.79; 95% CI, 1.22 to 2.63).

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No evidence is available from randomized or nonrandomized controlled studies in which outcomes from groups of well-matched patients managed using serial changes in sST2 blood levels were compared with those managed using the reference standard of BNP or NT-proBNP levels.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

No inferences can be drawn about the clinical utility of sST2 levels for chronic heart failure.

Section Summary: Use of sST2 in Chronic Heart Failure Patients

Several analyses, mainly retrospective, have evaluated whether sST2 levels are associated with disease prognosis, especially mortality outcomes. Studies mainly found that elevated sST2 levels were statistically associated with elevated risk of mortality. A pooled analysis of study results found that sST2 levels significantly predicted overall mortality and cardiovascular mortality. Several studies, however, found that sST2 test results did not provide additional prognostic information compared with BNP or NT-proBNP levels. In general, it appears that elevated sST2 levels predict higher risk of poor outcomes better than lower levels. The available evidence is limited by interstudy inconsistency and differences in
patient characteristics, particularly the severity of heart failure, its etiology, duration, and treatment. Furthermore, most of the evidence was obtained from retrospective analyses of sST2 levels in subsets of larger patient cohorts within RCTs, potentially biasing the findings. The evidence primarily shows associations between elevated sST2 levels and poor outcomes, but does not go beyond that in demonstrating a clinical connection among biomarker status, treatment received, and clinical outcomes.

Use of Soluble ST2 in Post Heart Transplantation Patients

Clinical Context and Test Purpose

The purpose of sST2 assay to determine prognosis and/or to predict acute cellular rejection in patients with heart transplantation an alternative to or an improvement on existing tests. The question addressed in this evidence review is: Does the use of the sST2 assay determine prognosis and/or predict acute cellular rejection in patients undergoing heart transplantation and improve net health outcomes?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with heart transplantation.

Interventions

The test being considered is sST2 assay to determine prognosis and/or to predict acute cellular rejection.

Comparators

Comparators of interest include endomyocardial biopsy for predicting acute cellular rejection.

Outcomes

The general outcomes of interest are OS, quality of life, and hospitalizations.

Table 1. Significant Outcomes for Post-heart Transplantation Patients.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Details</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbid events</td>
<td>Short-term and long-term events, such as acute cellular rejection, myocardial infarction, and stroke</td>
<td>30 days; 6 months; 1-5 years</td>
</tr>
<tr>
<td>Hospitalizations</td>
<td>Inpatient hospital admissions</td>
<td>30 days, 6 months; 1-5 years</td>
</tr>
</tbody>
</table>

Technically Reliable

Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Study Selection Criteria
For the evaluation of clinical validity of sST2 testing, methodologically credible studies were selected using the following principles:

For the evaluation of clinical validity of the tests, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described
- Included a validation cohort separate from development cohort.

Serum ST2 levels have been proposed as a prognostic marker post heart transplantation and as a test to predict acute cellular rejection (graft-versus-host disease). There is very little evidence available for these indications. Januzzi et al (2013) retrospectively assessed sST2 levels in 241 patients post heart transplant.25 Over a follow-up out to 7 years, sST2 levels were predictive of total mortality (HR=2.01; 95% CI, 1.15 to 3.51; p=0.01). Soluble ST2 levels were also associated with risk of acute cellular rejection, with a significant difference between the top and bottom quartiles of sST2 levels in the risk of rejection (p=0.003).

In study by Pascual-Figal et al (2011), 26 patients were identified with post cardiac transplantation and an acute rejection episode.26 Soluble ST2 levels were measured during the acute rejection episode and compared with levels measured when acute rejection was not present. Soluble ST2 levels were higher during the acute rejection episode (130 ng/mL) than during the nonrejection period (50 ng/mL; p=0.002). Elevated sST2 levels greater than 68 ng/mL had a positive predictive value of 53% and a negative predictive value of 83% for the presence of acute cellular rejection. The addition of sST2 levels to serum BNP resulted in incremental improvement in identifying rejection episodes.

Table 2. Summary of Key Nonrandomized Clinical Validity Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Treatment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januzzi (2013)²⁵</td>
<td>Retrospective</td>
<td>US</td>
<td>NR</td>
<td>Post cardiac transplantation</td>
<td>sST2 levels assessment (n=241)</td>
<td>Median 7.1 years</td>
</tr>
<tr>
<td>Pascual-Figal (2011)²⁶</td>
<td>Retrospective</td>
<td>Spain</td>
<td>2002-2007</td>
<td>Post cardiac transplantation with acute rejection</td>
<td>sST2 levels assessment (n=26)</td>
<td>Median 3 months</td>
</tr>
</tbody>
</table>

NR: not reported; sST2: soluble suppression of tumorigenicity-2.

Table 3. Summary of Key Nonrandomized Clinical Validity Study Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Total Mortality</th>
<th>ST2 Levels</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januzzi (2013)²⁵</td>
<td>HR (CI) 2.02 (1.16-3.52)</td>
<td>≥ 30 ng/mL at 7 year follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pascual-Figal (2011)²⁶</td>
<td>Rejection Ep. 130 ng/mL (IQR 60)</td>
<td>53%</td>
<td>83%</td>
<td></td>
</tr>
</tbody>
</table>
Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No RCTs were identified using sST2 levels that directed patient management in heart transplantation patients and which assessed patient outcomes.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

No inferences can be drawn about the clinical utility of sST2 levels for patients with heart transplantation.

Section Summary: Use of sST2 in Post Heart Transplantation Patients

Few studies are available and they are observational and retrospective. No prospective studies were identified that provide high-quality evidence on the ability of sST2 levels to predict transplant outcomes. One retrospective study (n=241) found that sST2 levels were associated with acute cellular rejection and mortality; another study (n=26) found that sST2 levels were higher during an acute rejection episode than before rejection.

Table 4. Summary of Selected Clinical Studies of sST2 to Predict Outcomes in Chronic Heart Failure Patients

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Mean Age, y</th>
<th>Study Description and Biomarkers</th>
<th>Primary Endpoints</th>
<th>Mean FU</th>
<th>Synopsis of Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ky et al (2011)</td>
<td>Ambulatory CHF (N=1141, 75% of Penn HF Study population)</td>
<td>56</td>
<td>Retrospective analysis of sST2 and NT-proBNP levels and their incremental usefulness over clinical SHFM</td>
<td>Mortality or cardiac transplant</td>
<td>2.8 y</td>
<td>• Elevated sST2 levels associated with increased risk (adjusted p=0.002) • sST2 in plus NT-proBNP levels showed moderate improvement over SHFM in predicting outcomes (p=0.017)</td>
</tr>
<tr>
<td>Bayes-Genis et al</td>
<td>Ambulatory decompensated HF</td>
<td>70</td>
<td>Retrospective analysis of sST2 and NT-proBNP</td>
<td>Mortality</td>
<td>2.8 y</td>
<td>• Elevated sST2 and NT-proBNP levels provided independent and additive</td>
</tr>
</tbody>
</table>
Assay for Chronic Heart Failure

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Sample Size</th>
<th>Biomarker Levels</th>
<th>Endpoint</th>
<th>Duration</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broch et al (2012)28†</td>
<td>Retrospective analysis</td>
<td>N=1149, 30% of</td>
<td>sST2, NT-proBNP,</td>
<td>CV mortality, nonfatal myocardial infarction or stroke</td>
<td>2.6 y</td>
<td>Elevated sST2 levels independently associated with increased risk for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CORONA RCT</td>
<td>and CRP levels</td>
<td>mortality, hospitalization due to HF, or any CV hospitalization (p<0.001)</td>
<td></td>
<td>mortality, hospitalization due to HF, or any CV hospitalization (p<0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• sST2 did not provide additive prognostic information vs NT-proBNP</td>
<td></td>
<td>• sST2 did not provide additive prognostic information vs NT-proBNP</td>
</tr>
<tr>
<td>Felker et al (2013)30†</td>
<td>Retrospective analysis</td>
<td>N=910, 39% of</td>
<td>sST2 and NT-proBNP</td>
<td>Mortality, hospitalization, functional capacity</td>
<td>2.5 y</td>
<td>Elevated sST2 levels independently associated with increased risk for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HF-ACTION RCT</td>
<td>levels</td>
<td></td>
<td></td>
<td>mortality, hospitalization due to HF, or any CV hospitalization (p<0.000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• sST2 and NT-proBNP provided independent prognostic information</td>
<td></td>
<td>• sST2 and NT-proBNP did not provide independent prognostic information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• sST2 did not provide additive prognostic information vs NT-proBNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaggin et al (2013)31†</td>
<td>Retrospective analysis</td>
<td>N=151, 100% of</td>
<td>sST2 and NT-proBNP</td>
<td>Composite outcome (worsening HF, hospitalization for HF, clinically</td>
<td>0.8 y</td>
<td>Elevated sST2 levels associated with increased risk for adverse CV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROTECT RCT</td>
<td>levels</td>
<td>significant CV events)</td>
<td></td>
<td>outcome (p<0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• sST2 and NT-proBNP did not provide independent prognostic information</td>
</tr>
<tr>
<td>Anand et al (2014)32†</td>
<td>Retrospective analysis</td>
<td>N=1650, 33% of</td>
<td>sST2, NT-proBNP,</td>
<td>All-cause mortality and composite outcome (mortality, SCD with</td>
<td>3.4 y</td>
<td>Elevated sST2 levels independently associated with increased risk of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Val-HeFT RCT</td>
<td>levels</td>
<td>resuscitation, hospitalization for HF, or administration of IV inotropic</td>
<td></td>
<td>poor outcomes (p<0.000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or vasodilator drug for >3 h without hospitalization)</td>
<td></td>
<td>• Baseline sST2 levels did not provide substantial prognostic information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>when added to a clinical model that included NT-proBNP levels</td>
</tr>
<tr>
<td>Zhang et al (2015)33†</td>
<td>Prospective analysis</td>
<td>N=1161</td>
<td>sST2 levels</td>
<td>All-cause mortality</td>
<td>1 y</td>
<td>Elevated sST2 levels independently associated with increased risk of all-cause mortality (p<0.001)</td>
</tr>
</tbody>
</table>
MP 2.04.130
ST2 Assay for Chronic Heart Failure

<table>
<thead>
<tr>
<th>Study</th>
<th>Setting</th>
<th>Study Design</th>
<th>Follow-Up Time</th>
<th>End Points</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Dupuy et al (2016)³⁴ | HF for ≥6 mo (N=178) | Prospective analysis of sST2, NT-proBNP, and other biomarker levels in sample from 1 center in France | All-cause mortality and CV mortality | 42 mo³ | • Elevated sST2 levels independently associated with increased risk for all-cause mortality and CV mortality (p<0.001)
• In multivariate analysis, sST2 and CRP significantly associated with all-cause mortality and CV mortality |

CHF: chronic heart failure; CRP: C-reactive protein; CV: cardiovascular; FU: follow-up; HF: heart failure; IV: intravenous; NT-proBNP: N-terminal pro B-type natriuretic peptide; RCT: randomized controlled trial; SCD: sudden cardiac death; SHFM: Seattle Heart Failure Model; sST2: soluble suppression of tumorigenicity-2.

³ Median.

Summary of Evidence

For individuals who have chronic heart failure who receive the sST2 assay to determine prognosis and/or to guide management, the evidence includes correlational studies and a meta-analysis. The relevant outcomes are OS, quality of life, and hospitalization. Most of the evidence is from reanalysis of existing RCTs and not from studies specifically designed to evaluate the predictive accuracy of sST2. Studies have mainly found that elevated sST2 levels are statistically associated with elevated risk of mortality. A pooled analysis of study results found that sST2 significantly predicted overall mortality and cardiovascular mortality. Several studies, however, found that sST2 test results did not provide additional prognostic information compared with NT-proBNP levels. Moreover, no comparative studies were identified on the use of the sST2 assay to guide management of patients diagnosed with chronic heart failure. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have heart transplantation who receive sST2 assay to determine prognosis and/or to predict acute cellular rejection, the evidence includes a small number of retrospective observational studies on the Presage ST2 Assay. The relevant outcomes are OS, morbid events, and hospitalization. No prospective studies were identified that provide high-quality evidence on the ability of sST2 to predict transplant outcomes. One retrospective study (n=241) found that sST2 levels were associated with acute cellular rejection and mortality; another study (n=26) found that sST2 levels were higher during an acute rejection episode than before rejection. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

The American College of Cardiology Foundation and American Heart Association (2013) published joint evidence-based guidelines, informed by a systematic review of the literature, on the management of heart failure. The review stated that soluble suppression of tumorigenicity-2 is a biomarker for myocardial fibrosis that predicts hospitalization and death in patients with heart failure and provides additive prognostic information to natriuretic peptide levels. In the ambulatory heart failure setting, the guidelines were based on a class IIb recommendation with level B evidence for the use of soluble
suppression of tumorigenicity-2 as an option to provide additive prognostic information to established clinical evaluation and biomarkers. The guidelines did not address other uses of soluble suppression of tumorigenicity-2.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

A search of ClinicalTrials.gov in March 2019 did not identify any ongoing or unpublished trials that would likely influence this review.

ESSENTIAL HEALTH BENEFITS

The Affordable Care Act (ACA) requires fully insured non-grandfathered individual and small group benefit plans to provide coverage for ten categories of Essential Health Benefits (“EHBs”), whether the benefit plans are offered through an Exchange or not. States can define EHBs for their respective state.

States vary on how they define the term small group. In Idaho, a small group employer is defined as an employer with at least two but no more than fifty eligible employees on the first day of the plan or contract year, the majority of whom are employed in Idaho. Large group employers, whether they are self-funded or fully insured, are not required to offer EHBs, but may voluntary offer them.

The Affordable Care Act requires any benefit plan offering EHBs to remove all dollar limits for EHBs.

REFERENCES

7. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. Aug 2012;14(8):803-869. PMID 22828712.

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>83006</td>
<td>Growth stimulation expressed gene 2 (ST2, Interleukin 1 receptor like-1)</td>
</tr>
<tr>
<td>HCPCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td>I50.1-I50.9</td>
<td>Heart failure code range</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td></td>
<td>Not applicable. ICD-10-PCS codes are only used for inpatient services. There are no ICD procedure codes for laboratory tests.</td>
</tr>
</tbody>
</table>

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/15/15</td>
<td>New Policy – Add to Medicine: Pathology/Laboratory subsection</td>
<td>Policy created with literature review through October 22, 2014; considered investigational.</td>
</tr>
<tr>
<td>05/19/16</td>
<td>Replace policy</td>
<td>Policy updated with literature review through March 2, 2016; reference 32 added. Policy statements unchanged. “Heart Transplant Rejection” added to policy title.</td>
</tr>
<tr>
<td>06/01/17</td>
<td>Replace policy</td>
<td>Policy updated with literature review through March 23, 2017; references 24 and 34 added. Policy statements unchanged.</td>
</tr>
<tr>
<td>05/30/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted. Policy updated with literature review through March 6, 2018; no references added. Policy statements unchanged.</td>
</tr>
<tr>
<td>05/16/19</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 05/16/2019.</td>
</tr>
<tr>
<td>Policy updated with literature review through March 4, 2019; no references added. Policy statements unchanged.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>