Medicare Policy

MP 2.04.100

Cardiovascular Risk Panels

<table>
<thead>
<tr>
<th>BCBSA Ref. Policy: 2.04.100</th>
<th>Related Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Review: 12/20/2018</td>
<td>2.02.16 Ultrasonographic Measurement of Carotid</td>
</tr>
<tr>
<td>Effective Date: 12/20/2018</td>
<td>Intima-Medial Thickness as an Assessment of Subclinical</td>
</tr>
<tr>
<td>Section: Medicine</td>
<td>Atherosclerosis</td>
</tr>
</tbody>
</table>

DISCLAIMER/INSTRUCTIONS FOR USE

Medical Policy provides general guidance for applying Blue Cross of Idaho benefit plans (for purposes of Medical Policy, the terms “benefit plan” and “member contract” are used interchangeably). Coverage decisions must reference the member specific benefit plan document. The terms of the member specific benefit plan document may be different than the standard benefit plan upon which this Medical Policy is based. If there is a conflict between a member specific benefit plan and the Blue Cross of Idaho’s standard benefit plan, the member specific benefit plan supersedes this Medical Policy. Any person applying this Medical Policy must identify member eligibility, the member specific benefit plan, and any related policies or guidelines prior to applying this Medical Policy. Blue Cross of Idaho Medical Policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the member specific benefit plan coverage. Blue Cross of Idaho reserves the sole discretionary right to modify all its Policies and Guidelines at any time. This Medical Policy does not constitute medical advice.

POLICY

Cardiovascular disease risk panels, consisting of multiple individual biomarkers intended to assess cardiac risk (other than simple lipid panels, see Policy Guidelines section), are considered **investigational**.

POLICY GUIDELINES

A simple lipid panel is generally composed of the following lipid measures:

- Total cholesterol
- Low-density lipoprotein cholesterol
Cardiovascular Risk Panels

- High-density lipoprotein cholesterol
- Triglycerides

Certain calculated ratios (eg total/high-density lipoprotein cholesterol) may also be reported as part of a simple lipid panel.

Other types of lipid testing (ie, apolipoproteins, lipid particle number or particle size, lipoprotein a.) are not considered components of a simple lipid profile.

This policy does not address the use of panels of biomarkers in the diagnosis of acute myocardial infarction.

Coding

There is no specific CPT code for cardiovascular risk panels. If there are CPT codes for the component tests in the panel and there is no algorithmic analysis used, the individual CPT codes may be reported. Examples of possible components codes include:

- 81291: MTHFR (5,10-methylenetetrahydrofolate reductase)(eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)
- 82465: Cholesterol, serum or whole blood, total
- 82652: Vitamin D; 1,25 dihydroxy, includes fraction(s), if performed
- 83090: Homocysteine
- 83698: Lipoprotein-associated phospholipase A2 (Lp-PLA2)
- 83718: Lipoprotein, direct measurement; high density cholesterol (HDL cholesterol)
- 83721: Lipoprotein, direct measurement; LDL cholesterol
- 83880: Natriuretic peptide
- 84478: Triglycerides
- 86141: C-reactive protein; high sensitivity (hsCRP)

If the testing involves multiple analytes and an algorithmic analysis, the unlisted multianalyte assay with algorithmic analysis (MAAA) code 81599 would be reported.

Effective July 1, 2018, there is a new PLA CPT code: 0052U (Lipoprotein, blood, high resolution fractionation and quantitation of lipoproteins, including all five major lipoprotein classes and subclasses of HDL, LDL, and VLDL by vertical auto profile ultracentrifugation).

Note that effective January 1, 2019, a direct single-step method for the quantification of small dense low-density lipoprotein cholesterol will be available: CPT code 83722.
preventive and diagnostic activities. Current methods of risk prediction in use in general clinical care are not highly accurate and, as a result, there is a potential unmet need for improved risk prediction instruments.

Risk Assessment

Components of CVD risk include family history, cigarette smoking, hypertension, and lifestyle factors such as diet and exercise. Also, numerous laboratory tests have been associated with CVD risk, most prominently lipids such as low-density lipoprotein (LDL) and high-density lipoprotein (HDL). These clinical and lipid factors are often combined into simple risk prediction instruments, such as the Framingham Risk Score. The Framingham Risk Score provides an estimate of the ten-year risk for developing cardiac disease and is currently used in clinical care to determine the aggressiveness of risk factor intervention, such as the decision to treat hyperlipidemia with statins.

Many additional biomarkers, genetic factors, and radiologic measures have been associated with increased risk of CVD. Over 100 emerging risk factors have been proposed as useful for refining estimates of CVD risk. Some general categories of these potential risk factors are as follows:

- Lipid markers. In addition to LDL and HDL, other lipid markers may have predictive ability, including the apolipoproteins, lipoprotein (a) (Lpa.), lipid subfractions, and/or other measures.
- Inflammatory markers. Many measures of inflammation have been linked to the likelihood of CVD. High-sensitivity C-reactive protein (hs-CRP) is an example of an inflammatory marker; others include fibrinogen, interleukins, and tumor necrosis factor.
- Metabolic syndrome biomarkers. Measures associated with metabolic syndrome, such as specific dyslipidemic profiles or serum insulin levels, have been associated with increased risk of CVD.
- Genetic markers. A number of variants associated with increased thrombosis risk, such as the MTHFR variant or the prothrombin gene variants, have been associated with increased CVD risk. Also, numerous single nucleotide variants have been associated with CVD in large genome-wide studies.

Risk Panel Testing

CVD risk panels may contain measures from one or all of the previous categories and may include other measures not previously listed such as radiologic markers (carotid medial thickness, coronary artery calcium score). Some CVD risk panels are relatively limited, including a few markers in addition to standard lipids. Others include a wide variety of potential risk factors from a number of different categories, often including both genetic and nongenetic risk factors. Other panels are composed entirely of genetic markers.

Some examples of commercially available CVD risk panels are as follows:

- CV Health Plus Genomics™ Panel (Genova Diagnostics): apolipoprotein (apo) E; prothrombin; factor V Leiden; fibrinogen; HDL; HDL size; HDL particle number; homocysteine; LDL; LDL size; LDL particle number; Lp(a); lipoprotein-associated phospholipase A2 (Lp-PLA2); MTHFR gene; triglycerides; very-low-density lipoprotein (VLDL); VLDL size; vitamin D; hs-CRP.
- CV Health Plus™ Panel (Genova Diagnostics): fibrinogen; HDL; HDL size; HDL particle number; homocysteine; LDL; LDL size; LDL particle number; lipid panel; Lp(a); Lp-PLA2; triglycerides; VLDL; VLDL size; vitamin D; hs-CRP.
- CVD Inflammatory Profile (Cleveland HeartLab): hs-CRP, urinary microalbumin, myeloperoxidase, Lp-PLA2, F2 isoprostanes.
• **Applied Genetics Cardiac Panel:** genetic variants associated with coronary artery disease: cytochrome p450 variants associated with metabolism of clopidogrel, ticagrelor, warfarin, blockers, rivaroxaban, prasugrel (2C19, 2C9/VKORC1, 2D6, 3A4/3A5), factor V Leiden, prothrombin gene, MTHFR gene, APOE gene.

• **Genetiks Genetic Diagnosis and Research Center Cardiovascular Risk Panel:** factor V Leiden, factor V R2, prothrombin gene, factor XIII, fibrinogen-45S, plasminogen activator inhibitor-1 (PAI-1), platelet GP IIIA variant HPA-1 (PLA1/2), MTHFR gene, angiotensin-converting enzyme insertion/deletion (ACE I/D), apo B, apo E.

• **Cardiac-Related Test Panels (Singulex):** Several panels of markers related to cardiac dysfunction, vascular inflammation and dysfunction, dyslipidemia, and cardiometabolic status are offered by Singulex. Some are offered in conjunction with a CVD testing and wellness management service. The test panels use an immunoassay method referred to as “ultra-sensitive Single Molecule Counting SMC. technology.”

• **Cardiac Dysfunction panel:** SMC™ cTnl (high-sensitivity troponin), N-terminal pro-B-type natriuretic peptide.

• **Vascular Inflammation and Dysfunction panel:** SMC™ IL-6, SMC™ IL-17A, SMC™ TNFa, SMC™ Endothelin, Lp-PLA2, hs-CRP, homocysteine, vitamin B12, folate.

• **Dyslipidemia panel:** total cholesterol, LDL-C (direct), apo B, small dense LDL, HDL cholesterol, apo AI, HDL2b, triglycerides, Lp(a).

• **Cardiometabolic panel:** parathyroid, vitamin D, calcium, magnesium, leptin, adiponectin, ferritin, cortisol, cystatin C, hemoglobin A1c, glucose, insulin, thyroid-stimulating hormone, T3 and free T4, uric acid, liver panel, renal panel, thyroid peroxidase antibody, thyroglobulin antibody.

In addition to panels that are specifically focused on CVD risk, a number of commercially available panels include markers associated with cardiovascular health, along with a range of other markers that have been associated with inflammation, thyroid disorders and other hormonal deficiencies, and other disorders. Examples of these panels include:

• **Cardiometabolic Panel (Singulex):** described above.

• **WellnessFX Premium (WellnessFX):** total cholesterol, HDL, LDL, triglycerides, apo AI, apo B, Lp(a), Lp-PLA2, omega-3 fatty acids, free fatty acids, lipid particle numbers, lipid particle sizes, blood urea nitrogen/creatinine, aspartate aminotransferase and alanine aminotransferase, total bilirubin, albumin, total protein, dehydroepiandrosterone, free testosterone, total testosterone, estradiol, sex hormone binding globulin, cortisol, insulin-like growth factor 1, insulin, glucose, hemoglobin A1c, total T4, T3 uptake, free T4 index, thyroid-stimulating hormone, total T3, free T3, reverse T3, free T4, hs-CRP, fibrinogen, homocysteine, complete blood count with differential, calcium, electrolytes, bicarbonate, ferritin, total iron binding capacity, vitamin B12, red blood cell magnesium, 25-hydroxy vitamin D, progesterone, follicle-stimulating hormone, luteinizing hormone.^

Regulatory Status

Multiple assay methods for cardiac risk marker components, such as lipid panels and other biochemical assays, have been cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process.

Other components of testing panels are laboratory-developed tests. Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory
Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

RATIONALE

This evidence review was created in November 2013 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through October 18, 2018.

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Cardiovascular Disease Risk Testing Panels

Clinical Context and Test Purpose

The purpose of CVD risk panel testing in patients who have risk factors for CVD is to inform management and treatment decisions.

The question addressed in this evidence review is: Does the use of CVD risk panels in patients who have a risk for CVD improve health outcomes?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with risk factors for CVD.

Interventions

The relevant intervention of interest is testing with CVD risk panels.

Comparators

The following practice is currently being used to manage those at risk for CVD: management of clinical risk factors with or without simple lipid testing.

Outcomes

The beneficial outcomes of interest are decreased in morbidity and mortality from CVD.

Timing

Development of CVD occurs over many years and manifests as coronary heart disease (CHD), CVD, or peripheral arterial disease. The timing for measuring outcomes can range from five to ten years.

Setting

Patients who have risk factors for CVD are initially managed in primary care. Patients who have had a cardiovascular (CV) event may be followed in specialty clinics by cardiologists and neurologists.

For the evaluation of clinical validity of the tests, studies that meet the following eligibility criteria were considered:
● Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
● Included a suitable reference standard
● Patient/sample clinical characteristics were described
● Patient/sample selection criteria were described
● Included a validation cohort separate from development cohort.

Technically Reliable

Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Association Between Single Risk Markers and CVD Risk

Systematic Reviews

There is a large evidence base on the association between individual risk markers and CVD risk. Many observational studies have established that individual risk markers are independent predictors of cardiac risk. Van Holten et al (2013) conducted a systematic review of meta-analyses of prospective studies evaluating the association between serologic biomarkers and primary CV events (ie, CV events and stroke in CVD-naive populations) and secondary CV events (ie, CV events and stroke in populations with a history of CVD). The final data synthesis included 85 studies published from 1988 to 2011. Sixty-five meta-analyses reported biomarkers’ association with primary CV events and 43 reported associations with secondary CV events. Eighteen meta-analyses reported biomarkers’ association with ischemic stroke in patients with a history of CVD. Only two meta-analyses that reported associations with ischemic stroke in patients with no history of CVD were identified, and results were not reported. CVD risks for markers with the strongest associations are summarized in Table 1.

Table 1. Serum Biomarkers and CVD Risk

<table>
<thead>
<tr>
<th>Marker</th>
<th>RR, HR, or OR</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction of CV events in patients with no history of CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>2.43 (RR)</td>
<td>2.10 to 2.83</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>2.33 (HR)</td>
<td>1.91 to 2.84</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.44 (HR)</td>
<td>0.42 to 0.48</td>
</tr>
<tr>
<td>Apo B</td>
<td>1.99 (RR)</td>
<td>1.65 to 2.39</td>
</tr>
<tr>
<td>Apo A:Apo B ratio</td>
<td>1.86 (RR)</td>
<td>1.55 to 2.22</td>
</tr>
<tr>
<td>HDL</td>
<td>1.83 (HR)</td>
<td>1.65 to 2.03</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1.83 (HR)</td>
<td>1.19 to 2.80</td>
</tr>
<tr>
<td>Prediction of CV events in patients with a history of CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn I and T</td>
<td>9.39 (OR)</td>
<td>6.46 to 13.67</td>
</tr>
<tr>
<td>High-sensitivity C-reactive protein</td>
<td>5.65 (OR)</td>
<td>1.71 to 18.73</td>
</tr>
</tbody>
</table>
Cardiovascular Risk Panels

<table>
<thead>
<tr>
<th>Marker</th>
<th>Value (HR)</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine</td>
<td>3.98</td>
<td>3.02 to 5.24</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>2.62</td>
<td>2.05 to 3.37</td>
</tr>
</tbody>
</table>

Prediction of ischemic stroke in patients with a history of CVD

- **Creatinine**: 3.98 (HR) 3.02 to 5.24
- **Cystatin C**: 2.62 (RR) 2.05 to 3.37
- **Fibrinogen**: 1.75 (HR) 1.55 to 1.98
- **Uric acid**: 1.47 (RR) 1.19 to 1.76

Adapted from van Holten et al (2013).

Prospective and Retrospective Studies

Since the publication of the van Holten et al (2013) review, multiple studies have reported on the associations between various risk factors and CVD outcomes. Representative examples of reported associations include: endothelin-1 in predicting mortality in patients who had heart failure with reduced ejection fraction; growth differentiation factor and interleukin 6 with CVD- and non-CVD-related death; and mid-regional pro-atrial natriuretic peptide and C-terminal pro-endothelin-1 with morbidity and mortality after cardiac surgery.

Wuopio et al (2018) analyzed 10-year data from the CLARICOR trial in Denmark to investigate the association between serum levels of cathepsin B and S and cardiovascular events and mortality in patients with stable CHD. The researchers used the drug trial’s placebo group (n=1998) as a discovery sample and the treatment group (n=1979) as a replication sample. A multivariable Cox regression model was used to adjust for risk factors and other variables. Analysis showed that cathepsin B was associated with an increased risk of cardiovascular events and mortality (p<0.001 for both groups), but cathepsin S was not (p>0.45). Limitations included unknown generalizability to patients with acute symptoms, other ethnic groups, and those unlikely to volunteer for such trials.

Welsh et al (2017) analyzed data from the Reduction of Events by Darbepoetin Alfa in Heart Failure drug trial to assess the prognostic value of emerging biomarkers in CVD screening. A panel of several biomarkers were measured at randomization in 1853 participants with complete data, and the relation between these biomarkers and a primary composite endpoint of heart failure hospitalization or cardiovascular death over 28 months of follow-up (n=834) was evaluated using Cox proportional hazards regression. Analysis showed that N-terminal probrain natriuretic peptide (NT-proBNP) (hazard ratio HR, 3.96) and high-sensitivity troponin T (HR=3.09) far outperformed other emerging biomarkers studied at predicting adverse cardiovascular outcomes. Limitations included the homogenous sample from the trial cohort and regional differences.

Harari et al (2017) conducted a prospective cohort study analyzing the association between non-high-density lipoprotein cholesterol (HDL-C) levels and CVD mortality in a long-term follow-up of 4832 men drawn from the Cardiovascular Occupational Risk Factor Determination in Israel Study. Patients were between the ages of 20 and 70 years (mean age, 42.1 years at baseline); all completed multiple questionnaires that evaluated medical history and possible risk factors for CVD, in addition to blood tests. Before adjusting for potential confounders, a positive association was found between several comparator cholesterol categories (simple lipids including total cholesterol, triglycerides, and HDL-C) and all-cause or CVD mortality; however, in multivariate analysis, many of these associations were no longer statistically significant.

For one of the primary outcomes (the efficacy of non-HDL-C in predicting CVD mortality), after adjusting for the known risk factors, results were statistically significant, with an association between non-HDL-C levels greater than 190 mg/dL and risk of mortality from CVD (HR=1.80; 95% confidence interval CI, 1.10
Another primary outcome was the prediction value of non-HDL for all-cause mortality; for this outcome, the association between all levels of non-HDL-C were not statistically insignificant after adjusting for potential confounders (for 130-159 mg/dL, p=0.882; 160-189 mg/dL, p=0.611; >=190 mg/dL, p=0.464); likewise, the association between simple lipids and all-cause mortality was not statistically significant after adjusting for confounders. The authors also acknowledged that the association between CVD mortality and higher non-HDL-C levels (>=190 mg/dL) was not statistically significant when adjusting for low-density lipoprotein cholesterol (HR=2.39; 95% CI, 0.92 to 6.13; p=0.073), but concluded that given the trends in p-values, non-HDL-C levels appeared superior at predicting mortality, compared with simple lipid testing.

Kunutsor et al (2016) published both a primary analysis and meta-analysis of current studies evaluating the association between levels of paraoxonase-1 (PON-1) and CVD risk; for all analyses, the primary endpoint was first-onset CVD. Of 6902 patients drawn from the PREVEND study, the mean age was 48 years, and 3321 (48%) of the patients were men; for the meta-analysis, researchers used data from 6 studies (total N=15064 patients). The authors noted that PON-1 activity showed a log-linear association with CVD risk, but compared the independence of PON-1 with that of HDL-C. In a model adjusted for known risk factors and confounding factors, PON-1 had an HR of 0.93 (95% CI, 0.86 to 0.99; p=0.037); comparatively, HDL-C showed a stronger association with risk of CVD, given the same adjustments (HR=0.84; 95% CI, 0.76 to 0.94; p=0.002). Also, the HR for PON-1 was no longer statistically significant when the model accounted for HDL-C (0.95; 95% CI, 0.88 to 1.02; p=0.153), suggesting that the link between PON-1 and HDL-C inhibits the independence of PON-1 as a risk marker. Secondary endpoints were CHD and stroke; for CHD, as with CV events, HRs for PON-1 were not statistically significant when fully adjusted for confounders (p=0.058) and HDL-C (p=0.471), compared with a strong association between HDL-C and CHD (0.67; 95% CI, 0.57 to 0.78; p<0.001). The meta-analysis was limited by considerable heterogeneity between studies but resulted in a pooled relative risk of 0.87 (95% CI, 0.80 to 0.96; p=0.005), reported as the CV event per 1 standard deviation increase in PON-1 values. Acknowledging the link between PON-1 and HDL-C as risk markers, the authors concluded that PON-1 added “no significant improvement in CVD risk assessment beyond conventional CVD risk factors.”

Risk Markers and CVD Risk Reclassification

Other studies have demonstrated that risk markers can be used to reclassify patients into different risk categories. Helfand et al (2009) reported on a summary of 9 systematic reviews evaluating novel risk factors’ association with CHD. Of the laboratory risk factors evaluated, C-reactive protein (CRP), homocysteine, and lipoprotein (a) were independent predictors of major CHD events when added to the Framingham Risk Score (FRS). However, none of the available systematic reviews evaluated the effect of each novel risk factor on risk-classification among patients classified as intermediate risk by the FRS. In a 2012 study of 165544 patients without baseline CVD enrolled in 37 prospective cohorts, the addition of individual novel lipid-related risk factors to conventional risk-classification models including total cholesterol and HDL-C, net reclassification improvements were less than 1% with the addition of each of these markers to risk scores containing conventional risk factors.

Association Between Multimarker Panels and CVD Risk

A more limited body of literature has evaluated the association between panels of markers and CVD risk and/or the reclassification of patients into different risk categories. Keller et al (2017) conducted a case-control study of the prognostic ability of a panel of 5 micro-RNAs (miR-34a, miR-223, miR-378, miR-499, miR-133), using 2 cohorts with patients randomly selected from previous studies; the combined primary outcome was overall mortality and CV events. In the derivation cohort, 21 of 178 patients experienced a CV event and/or death within 5 years; in the
validation cohort, which excluded patients with a history of CVD, 64 of 129 patients died during a 12-year follow-up. While the individual micro-RNAs lacked a significant association with outcome, the panel as a whole improved both prognostic and predictive value for overall mortality, particularly when adjusted for FRS variables (HR=2.89; 95% CI, 1.32 to 6.33; p=0.008). For the derivation cohort, the investigators reported an increase in the area under the curve from 0.77 to 0.85 with the addition of the miR panel in predicting mortality risk within 5 years (p=0.039); this improvement was confirmed by a net reclassification index (NRI) of 0.42 in the validation cohort (p=0.014). The authors reported that the C index was statistically unaffected by the miR panel, but that the miR panel was significantly associated with mortality in the validation cohort (HR=1.31; 95% CI, 1.03 to 1.66; p=0.03).

A prospective cohort study by de Lemos et al (2017) evaluated a panel of 5 biomarker tests to develop a composite score to predict CVD risk. The 2 cohorts were drawn from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Dallas Heart Study (DHS): from MESA, 3112 (47%) patients were men; and from DHS, 969 (44%) of the patients were men, none of whom had prevalent CVD at baseline. Each test had its own prespecified level of abnormality: a 12-lead electrocardiogram measured the presence or absence of left ventricular hypertrophy; additional tests measured for coronary artery calcium levels greater than 10 U, NT-proBNP levels of 100 pg/mL or more, high-sensitivity cardiac troponin levels of 5 ng/L or more, and high-sensitivity CRP (hs-CRP) levels of 3 mg/L or more. Tests data were analyzed as categorical and as continuous variables, and included models with and without all five test results; in all models for MESA, there was an independent association between the tests and the primary endpoint (global CVD). There was no association between hs-CRP and the primary outcome in the DHS cohort, between hs-CRP and a secondary outcome (atherosclerotic CVD) in the MESA cohort, or between hs-CRP and high-sensitivity cardiac troponin and atherosclerotic CVD in the DHS cohort. In MESA, the C statistic for the primary outcome increased from 0.73 when adjusted for variables alone to 0.786 when adjusted for individual test results (p<0.001), and the DHS cohort showed a similar significant improvement (0.832 to 0.850; p<0.01). The category-free NRI for both cohorts were as follows: MESA NRI, 0.473 (95% CI, 0.383 to 0.563); and DHS NRI, 0.261 (95% CI, 0.052 to 0.470). Based on results from the five tests, the authors assigned each patient a risk score, which they suggested could aid caregivers in identifying patients who need specific treatment or changes in preventive management. Further discussion of this risk score is beyond the scope of this evidence review.

Greisenegger et al (2015) evaluated the association between a panel of biomarkers and mortality after transient ischemic attack and minor ischemic stroke. The study population included 929 patients who were enrolled from 2002-2007 and followed until 2013. Fifteen potential risk markers were prospectively measured (interleukin 6, CRP, neutrophil-gelatinase-associated lipocalin, soluble tumor necrosis factor a receptor-1, thrombomodulin, fibrinogen, von Willebrand factor, P-selectin, protein Z, D-dimer, antiphosphorylcholin, NT-proBNP, heart-type fatty acid binding protein, neuron-specific enolase, brain-derived neurotrophic factor). None of the biomarkers was predictive of nonfatal ischemic stroke or myocardial infarction (MI). Six factors were individually associated with CVD death, of which the four with the strongest association (von Willebrand factor, heart-type fatty acid binding protein, NT-proBNP, soluble tumor necrosis factor a receptor-1) were entered into a predictive model. The independent contribution of the four biomarkers taken together added more prognostic information than the established clinical risk factors used in a conventional model (clinical risk factors: p=0.002; four biomarkers: p<0.001).

Cho et al (2015) reported on the impact of 6 biomarkers (hs-CRP; interleukin 6; receptor for advanced glycation end products; lipoprotein-associated phospholipase A2; adiponectin; regulated on activation, normal T cell expressed and secreted) on CVD risk-classification in a case-control study of 503 patients with coronary artery disease and 503 healthy controls. The addition of the 6 novel biomarkers to the
multivariable risk prediction model led to an improvement in the C statistic (0.953 vs 0.937, p<0.001). However, the performance of the model in a cohort not enriched with coronary artery disease patients is unknown.

Wilsgaard et al (2015) evaluated 51 protein biomarkers for association with risk of incident MI with the goal of developing a clinically significant risk model that would add information to conventional risk models. Patients were drawn from a population-based cohort study to form a case-control study, with 419 cases who experienced the first-ever MI within the 10-year follow-up and 398 controls randomly selected from participants who had no MI during the follow-up. Fifty-one markers were selected for evaluation based on previously reported associations and the availability of immunoassay techniques and passage of internal quality controls. Seventeen markers were predictive of MI after adjustment for traditional CVD risk factors. By adding risk markers back into the traditional risk factor-based model, the authors determined that a composite of apo B/apo AI, plasma kallikrein, lipoprotein (a), and matrix metalloproteinase 9 increased the model’s area under the receiver operating curve by 0.027, with an NRI of 9%.

Guarrera et al (2015) evaluated DNA methylation profiles and Long Interspersed Nuclear Element 1 (LINE-1) hypomethylation in the prediction of MI, analyzing data from 609 cases and 554 controls drawn from the Italian European Prospective Investigation into Cancer and Nutrition study (EPICOR), and the Dutch EPIC study (EPIC-NL). Rather than analyze single 5-C-phosphate-G-3 sites for their association with CVD, the authors focused on differentially methylated regions, as well as LINE-1 methylation profiles, adjusting models to account for their addition to traditional risk factors. A cluster of 15, 5-C-phosphate-G-3 sites, was statistically significant in both cohorts; the region was in exon 1 of the zinc finger and BTB domain containing the protein 12 gene (ZBTB12), and showed hypomethylation comparable between EPICOR cases and controls (effect size, -0.019; 95% CI, -0.03 to -0.01; p=1.9 x 10^-7, Q=0.005). Although the association was not statistically significant for women in the EPICOR cohort, the EPIC-NL cohort showed significant hypomethylation in the ZBTB12 region between cases and controls as a whole (effect size, -0.013; 95% CI, -0.02 to -0.005; p<0.001), as well as for male (effect size, -0.014; 95% CI, -0.03 to -0.001; p=0.034) and female subgroups (effect size, -0.012; 95% CI, -0.02 to -0.004; p=0.006). There was also significant association between LINE-1 hypomethylation in EPICOR cases vs controls (effect size, -0.511; 95% CI, -0.80 to -0.22; p<0.001, and this association held for the male subgroup (effect size, -0.520; 95% CI, -0.87 to -0.17; p=0.004) but not in the female subgroup (effect size, -0.496; 95% CI, -1.12 to -0.13; p=0.12). Secondary endpoints involved comparing the risk prediction for MI in the cumulative DNA methylation profile of LINE-1 sequences with that of traditional risk factors alone; while the association between LINE-1 and MI was significant for men in the EPIC-NL cohort (overall response, 1.95; 95% CI, 1.02 to 3.71; p=0.043, reference group above the median), the association was not significant for women in this same cohort (overall response, 1.05; 95% CI, 0.65 to 1.67; p=0.850). When the model included both traditional risk factors and the DNA methylation profile, NRI and integrated discrimination improvement measures were statistically significant, compared with risk factors alone. In the EPIC-NL cohort, NRI and integrated discrimination improvement among men were 0.47 (95% CI, 0.19 to 0.76; p=0.001) and 0.04 (95% CI, 0.01 to 0.08; p=0.004), respectively; among women, they were 0.23 (95% CI, 0.02 to 0.43; p=0.034) and 0.03 (95% CI, 0.01 to 0.05; p=0.001), respectively.

Association Between Multimarker Panels and Wellness

The preponderance of the literature on CVD risk panels has focused on the risk of specific events related to CVD (eg, stroke, MI) or on the development of CVD. With the development of panels that address “wellness” more broadly, studies were sought on the association between risk markers and measures of

Original Policy Date: November 2013
overall wellness or health. No empirical studies were identified. Lara et al (2015) reported the recommendations of the U.K. Medical Research Council to develop recommendations for a panel of biomarkers for healthy aging.12 A variety of markers, some laboratory-based, associated with physical capability and physiologic, cognitive, endocrine, immune, and sensory functions were proposed.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

While multiple risk factors have been individually associated with CVD, there is no convincing evidence that the addition of any individual risk marker, or combination of risk markers, leads to clinically meaningful changes in management that improve outcomes. In the available studies, improvements in risk prediction have generally been of a small magnitude, and/or have not been found to be associated with clinically meaningful management changes.2, 15, 23 Because of this uncertain impact on management, the clinical utility for any of the individual risk markers is either low or uncertain.

Moreover, the available evidence on individual risk markers is only of limited value in evaluating CVD risk panels. It is difficult to extrapolate the results of single risk factors to panels, given the variable composition of panels. Ideally, panels should be evaluated individually based on their impact on clinical decision making.

No published studies were identified that evaluated the use of commercially available CVD risk panels as risk prediction instruments in clinical care. Some studies have attempted to incorporate novel risk markers into an overall quantitative risk score,24, 25 but these risk scores are not the same as CVD risk panels, which report the results of individual risk factors.

Furthermore, there are no standardized methods for combining multiple individual risk factors with each other, or with established risk prediction instruments such as the FRS. Therefore, there is a potential for both overestimation and underestimation of the true cardiac risk. This may lead to management decisions based on an inaccurate risk assessment.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Because the clinical validity of cardiovascular risk panel testing has not been established, a chain of evidence cannot be constructed to support the clinical utility of testing.

Summary of Evidence

For individuals who have risk factors for CVD who receive CVD risk panels, the evidence includes multiple cohort and case-control studies and systematic reviews of these studies. The relevant outcomes are test validity, other test performance measures, change in disease status, and morbid events. The available evidence from cohort and case-control studies indicates that many of the individual risk factors included in CVD risk panels are associated with increased risk of CVD. However, it is not clear how the results of individual risk factors impact management changes, so it is also uncertain
how the panels will impact management decisions. Given the lack of evidence for clinical utility of any individual risk factor beyond simple lipid measures, it is unlikely that the use of CVD risk panels improves outcome. Studies that have evaluated the clinical validity of panels of multiple markers have not assessed management changes that would occur as a result of testing or demonstrated improvements in outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

The American College of Cardiology and the American Heart Association (2013) issued joint guidelines for the assessment of cardiovascular disease risk. These guidelines recommended that age- and sex-specific pooled cohort equations, which included total cholesterol and high-density lipoprotein to predict the ten-year risk of a first hard atherosclerotic cardiovascular disease event, be used in non-Hispanic blacks and non-Hispanic whites between 40 and 79 years of age (American Heart Association/American College of Cardiology class of recommendation I, American Heart Association/American College of Cardiology level of evidence B). Regarding newer risk markers after quantitative risk assessment, the guidelines stated the following: “If, after quantitative risk assessment, a risk-based treatment decision is uncertain, assessment of >=1 of the following-family history, hs-CRP high-sensitivity C-reactive protein, CAC coronary artery calcium score, or ABI ankle-brachial index—may be considered to inform treatment decision-making” (class of recommendation IIb, level of evidence B). The guidelines did not recommend other novel cardiac risk factors or panels of cardiac risk factors.

U.S. Preventive Services Task Force Recommendations

No recommendations specific to the use of cardiovascular disease risk panels were identified. The U.S. Preventive Services Task Force (2018) updated its recommendation on the use of nontraditional risk factors in coronary heart disease risk assessment:

“The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of adding the ankle-brachial index (ABI), high-sensitivity C-reactive protein (hsCRP) level, or coronary artery calcium (CAC) score to traditional risk assessment for cardiovascular disease (CVD) in asymptomatic adults to prevent CVD events.”

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 2.

Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>A Pilot Study to Evaluate the Utility of the SomaLogic CVD Secondary Risk Panel as a Tool to Stratify Cardiovascular Risk</td>
<td>200</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MP 2.04.100
Cardiovascular Risk Panels

NCT00969865* Individualized Comprehensive Atherosclerosis Risk-reduction Evaluation Program (iCARE) 170 Dec 2016(completed)

NCT01685840 Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure 894 Sep 2016(terminated)

NCT: national clinical trial.

*Denotes industry-sponsored or cosponsored trial.

ESSENTIAL HEALTH BENEFITS

The Affordable Care Act (ACA) requires fully insured non-grandfathered individual and small group benefit plans to provide coverage for ten categories of Essential Health Benefits (“EHBs”), whether the benefit plans are offered through an Exchange or not. States can define EHBs for their respective state.

States vary on how they define the term small group. In Idaho, a small group employer is defined as an employer with at least two but no more than fifty eligible employees on the first day of the plan or contract year, the majority of whom are employed in Idaho. Large group employers, whether they are self-funded or fully insured, are not required to offer EHBs, but may voluntary offer them.

The Affordable Care Act requires any benefit plan offering EHBs to remove all dollar limits for EHBs.

REFERENCES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td></td>
<td>No specific CPT code. See Policy Guidelines</td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td></td>
<td>Investigational for all relevant diagnoses</td>
</tr>
<tr>
<td>Z13.6</td>
<td></td>
<td>Encounter for screening for cardiovascular disorders</td>
</tr>
<tr>
<td>Z82.41, Z82.49</td>
<td></td>
<td>Family history of ischemic heart disease and other diseases of the circulatory system code range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-10-PCS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not applicable. ICD-10-PCS codes are only used for inpatient services. There are no ICD procedure codes for laboratory tests.</td>
</tr>
</tbody>
</table>

| Type of service | Laboratory |
| Place of service | Outpatient |

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12/15</td>
<td>Replace policy</td>
<td>Policy updated with literature review through October 14, 2015; references 5-6 and 8-15 added. Rationale reorganized. Policy statement unchanged.</td>
</tr>
<tr>
<td>02/24/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho annual review; no change to policy.</td>
</tr>
<tr>
<td>12/27/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted. Policy updated with literature review through October 26, 2017; references 11-12, 16, 18-19, and 25 added; references 24 updated. Policy statement unchanged.</td>
</tr>
<tr>
<td>12/20/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted, effective 12/20/2018. 2.04.32 Measurement of Lipoprotein-Associated Phospholipase A2 in the Assessment of Cardiovascular Risk</td>
</tr>
</tbody>
</table>