MP 2.01.85
Neural Therapy

DISCLAIMER
Our medical policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.

POLICY
Neural therapy is considered investigational for all indications.

POLICY GUIDELINES
Neural therapy should be distinguished from the use of peripherally injected anesthetic agents for nerve blocks or local anesthesia. The site of the injection for neural therapy may be located far from the source of the pain or injury. The length of treatment can vary from 1 session to a series of sessions over a period of weeks or months.

There are no specific HCPCS codes for these local anesthetics when injected in this fashion (there is a code for IV lidocaine). The procedure would be reported using CPT codes for therapeutic injection such as:

- 20550: Injection(s); single tendon sheath, or ligament, aponeurosis
- 20551: Injection(s); single tendon origin/insertion
- 20552-20553: Code range for injection(s); single or multiple trigger point(s)
- 64400-64450: Code range for injection, anesthetic agent into nerves
- 64479-64484: Code range for injection, anesthetic agent and/or steroid, transforaminal epidural, with imaging guidance by spinal region
- 64505-64530: Code range for injection, anesthetic agent into autonomic nerves/ganglia
- 96372: Therapeutic, prophylactic, or diagnostic injection (specify substance or drug); subcutaneous or intramuscular

An unlisted CPT code such as 99199 might always be used.

BENEFIT APPLICATION
BLUECARD/NATIONAL ACCOUNT ISSUES
No applicable information.

BACKGROUND
The practice of neural therapy is based on the belief that energy flows freely through the body. It is
proposed that injury, disease, malnutrition, stress, and scar tissue disrupt this flow, creating disturbances in the electrochemical function of tissues and energy imbalances called “interference fields.” Injection of a local anesthetic is believed to re-establish the normal resting potential of nerves and flow of energy. Alternative theories include fascial continuity, the ground (matrix) system, and the lymphatic system.¹

There is a strong focus on treatment of the autonomic nervous system, and injections may be given at a location other than the source of the pain or location of an injury. Neural therapy is promoted mainly to relieve chronic pain. It has also been proposed to be helpful for allergies, hay fever, headaches, arthritis, asthma, hormone imbalances, libido, infertility, tinnitus, chronic bowel problems, sports or muscle injuries, gallbladder, heart, kidney, or liver disease, dizziness, depression, menstrual cramps, and skin and circulation problems.

REGULATORY STATUS
Neural therapy is a procedure and, as such, is not subject to regulation by the U.S. Food and Drug Administration.

RATIONALE
This evidence review was created in December 2011 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through September 11, 2017.

Assessment of efficacy for therapeutic intervention involves a determination of whether an intervention improves health outcomes. The optimal study design for this purpose is a randomized controlled trial that includes clinically relevant measures of health outcomes. Intermediate outcome measures, also known as surrogate outcome measures, may also be adequate if there is an established link between the intermediate outcome and true health outcomes. Nonrandomized comparative studies and uncontrolled studies can sometimes provide useful information on health outcomes but are prone to biases such as non-comparability of treatment groups, placebo effect, and variable natural history of the condition.

NEURAL THERAPY
Neural therapy is an alternative medicine modality that was developed in Germany and is most commonly reported in Europe. Most of the literature on neural therapy consists of non-English-language publications.

In 2012, Hui et al reported a non-blinded randomized controlled trial of complementary and alternative medicine for chronic herpes zoster-related pain.² The 59 patients included in the trial had a confirmed diagnosis of herpes zoster of at least 30 days in duration (median, 4.8 months; range, 1 month to 15 years) and with at least moderate postherpetic neuralgia pain (≥4 on a 10-point Likert scale). The therapy included 3 weeks of neural therapy (injection of 1% procaine at up to 6 points along the affected dermatome) along with other therapies from traditional Chinese medicine (i.e., acupuncture, cupping and bleeding, Chinese herbs) and meditation. A wait-list control group received the same treatment beginning 3 weeks after randomization. Intention-to-treat analysis of pain scores at 3 weeks showed significant improvement in the complementary and alternative medicine group (baseline, 7.5; posttreatment, 2.3), with little change in the wait-list control group (baseline, 7.8; 3 weeks, 7.2). A reduction in pain of at least 50% was observed in 66.7% of patients in the treatment group compared with 8.7% in the control group. In the 56% of patients who responded to a questionnaire after 1 to 2 years, 78.8% reported continued relief of pain. Interpretation of the results is limited by the multiple interventions provided and the possibility of a placebo effect in this non-blinded study.
One English-language report from 1999 described a small double-blind, randomized, placebo-controlled crossover trial in 21 patients with multiple sclerosis. Anesthetic or saline was injected at acupuncture points in the ankle and at 14 or 15 points around the circumference of the head. Patients received 2 injections of anesthetic or saline in the first week; in the second week, all patients received anesthetic injections. At the end of the first week, 8 of 11 patients in the active treatment group and 1 of 10 in the placebo group had improved in 1 or more functions on the Kurtzke scale. Therapy was continued as needed for up to 3.5 years, with long-term improvements being reported in over 50% of patients. At the time of publication, the authors reported having treated more than 300 patients with multiple sclerosis with this approach.

A 2013 nonrandomized comparative study from Turkey compared neural therapy (n=33) with physical therapy (PT; n=27) for the treatment of chronic low back pain. The average duration of symptoms before treatment was 13.78 months. Patients who had not previously been treated with PT were assigned to the PT group, and patients who had previously failed PT were assigned to the neural therapy group. PT consisted of exercises, hot pack, ultrasound, and transcutaneous electrical nerve stimulation (TENS) over 15 sessions. Neural therapy consisted of anesthetic injection into scars, trigger points, and acupuncture points over 5 sessions. Outcome measurements included the visual analog score for pain, the Roland-Morris Disability Questionnaire for disability, the Nottingham Health Profile for quality of life, and the Hospital Anxiety Depression Scale for depression, anxiety, and quality of life. The neural therapy group exhibited greater disability and worse quality of life at baseline. Both groups improved over time, and there was greater improvement in the neural therapy group on some of the outcome measures. Interpretation of this study is limited due to the nonrandomized treatment assignment, lack of comparability between groups at baseline, and lack of a placebo control.

In a 1990 case series, Arnér et al reported prolonged relief of neuralgia after regional anesthetic blocks in 25 of 38 patients. All patients had neuralgia due to nerve injury (endogenous entrapment or surgical or accidental trauma) with a mean pain duration of 3.8 years (range, 6 months to 12 years). All patients had a demonstrable sensory deficit or sensory hyperfunction within the cutaneous territory supplied by the injured nerve as measured by quantitative sensory testing. None of the patients had the classical type of complex regional pain syndrome (previously called reflex sympathetic dystrophy). Each patient received a series of 2 to 23 blocks (median, 5.2 blocks) of bupivacaine. Sixteen patients experienced subjective improvement for weeks to months after the series of blocks, but a second series of blocks was effective in only seven of these patients. Four of the seven reported sustained improvement after 1 to 4 years. Thirty of the 38 patients did not experience long-lasting pain relief and were subsequently treated with transcutaneous electrical nerve stimulation. The report concluded that nerve blocks with local anesthetics rarely provide long-term, complete relief of neuralgia.

Egli et al (2015) reported on a series of 280 patients with chronic severe pain who had failed conventional medical measures. The most common reason for referral to the academic center in Europe was back pain, and more than two-thirds of patients had undergone PT, osteopathy, or chirotherapy. After an average of 9.2 treatments (range, 1-40) in the first year, 126 patients reported that they were considerably better and 41 reported being pain-free. Of the 193 patients who were taking pain medications at the start of treatment, three-quarters had reduced pain medication or were taking no pain medication after 1 year.

In 2011, Schmittinger et al reported on a case of brainstem hemorrhage following neural therapy for decreased libido.
SUMMARY OF EVIDENCE
For individuals who have chronic pain or illness who receive neural therapy, the evidence includes small randomized trials and a large case series. Relevant outcomes are symptoms, functional outcomes, quality of life, medication use, and treatment-related morbidity. There are few English-language reports assessing the use of neural therapy for pain, and the available studies have methodologic limitations that preclude conclusions on efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

PRACTICE GUIDELINES AND POSITION STATEMENTS
The American Association of Orthopaedic Medicine, which provides information and educational programs on the nonsurgical treatment of musculoskeletal problems, has described neural therapy on its website and provides a link for instructional courses on the procedure.

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
Not applicable.

MEDICARE NATIONAL COVERAGE
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

ONGOING AND UNPUBLISHED CLINICAL TRIALS
A search of ClinicalTrials.gov in November 2017 did not identify any ongoing or unpublished trials that would likely influence this review.

REFERENCES
CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td></td>
<td>No specific codes, see Policy Guidelines</td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td></td>
<td>Investigational for all diagnoses</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td></td>
<td>ICD-10-PCS codes are only used for inpatient services. There is no specific ICD-10-PCS code for this procedure.</td>
</tr>
</tbody>
</table>

POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/14</td>
<td>Replace policy</td>
<td>Policy updated with literature review through November 24, 2014; reference 7 added; policy statement unchanged.</td>
</tr>
<tr>
<td>12/10/15</td>
<td>Replace policy</td>
<td>Policy updated with literature review through November 11, 2015; reference 6 added. Policy statement unchanged.</td>
</tr>
<tr>
<td>02/24/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho policy review, no changes to the policy statement.</td>
</tr>
<tr>
<td>11/30/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted. Policy updated with literature review through September 11, 2017; no references added. Policy statement unchanged.</td>
</tr>
</tbody>
</table>