Medical Policy

MP 2.01.53
Biofeedback for Miscellaneous Indications

<table>
<thead>
<tr>
<th>Related Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01.27 Biofeedback as a Treatment of Urinary Incontinence in Adults</td>
</tr>
<tr>
<td>2.01.28 Neurofeedback</td>
</tr>
<tr>
<td>2.01.29 Biofeedback as a Treatment of Headache</td>
</tr>
<tr>
<td>2.01.30 Biofeedback as a Treatment of Chronic Pain</td>
</tr>
<tr>
<td>2.01.64 Biofeedback as a Treatment of Fecal Incontinence and Constipation</td>
</tr>
<tr>
<td>8.01.39 Treatment of Tinnitus</td>
</tr>
<tr>
<td>9.01.502 Experimental / Investigational Services</td>
</tr>
</tbody>
</table>

DISCLAIMER
Our medical policies are designed for informational purposes only and are not an authorization, explanation of benefits or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.

POLICY
Biofeedback is considered **investigational** as a treatment of the following miscellaneous conditions:

- anxiety disorders
- asthma
- Bell palsy
- depression
- hypertension
- insomnia
- movement disorders, such as motor function after stroke, injury, or lower-limb surgery
- multiple sclerosis
- orthostatic hypotension in patients with spinal cord injury
- pain management during labor
- posttraumatic stress disorder
- prevention of preterm birth
- Raynaud disease
- sleep bruxism
- tinnitus.

POLICY GUIDELINES
No applicable information.
Biofeedback for Miscellaneous Indications

BENEFIT APPLICATION

BLUECARD/NATIONAL ACCOUNT ISSUES
In many Plans, biofeedback is contractually excluded.

BACKGROUND

Biofeedback is a technique intended to teach patients self-regulation of certain unconscious or involuntary physiologic processes. Biofeedback equipment converts physiological signals into outputs given to patients. The technique involves the feedback of a variety of types of information not usually available to the patient, followed by a concerted effort on the part of the patient to use this feedback to help alter the physiologic process in a specific way.

Biofeedback has been proposed as a treatment for a variety of diseases and disorders including anxiety, headaches, hypertension, movement disorders, incontinence, pain, asthma, Raynaud disease, and insomnia. The type of feedback used in an intervention (eg, visual, auditory) depends on the nature of the disease or disorder being treated. This evidence review focuses on the use of biofeedback for the treatment of hypertension, anxiety, insomnia, asthma, movement disorders (eg, motor function after stroke, injury, or lower-limb surgery), and other applications (ie, conditions not addressed in other evidence reviews on biofeedback).

In addition, this evidence review focuses on biofeedback devices that measure and provide information on physiologic processes such as heart rate, muscle tension, skin temperature, and blood flow. Electroencephalographic biofeedback, also called neurofeedback, which measures brainwave activity, is addressed in evidence review 2.01.28.

REGULATORY STATUS
A large number of biofeedback devices have been cleared through the U.S. Food and Drug Administration’s 510(k) process since 1976.

RATIONALE

This evidence review was created in July 1997 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through September 20, 2018.

This review was informed by a TEC Assessment (1995), which concluded that the evidence was insufficient to demonstrate the effectiveness of biofeedback for treatment of 9 conditions: anxiety disorders, headaches, hypertension, movement disorders, incontinence, pain, asthma, Raynaud disease, and insomnia.¹

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The
randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Psychological treatments involve both nonspecific and specific therapeutic effects. Nonspecific effects (sometimes called placebo effects) occur as a result of therapist contact, positive expectancies on the part of the subject and the therapist, and other beneficial effects that occur as a result of being a patient in a therapeutic environment. Specific effects are those that occur only because of the active treatment, above any nonspecific effects that may be present. This review focuses on identifying evidence that isolates the specific effect of biofeedback, apart from the nonspecific placebo effects. Because an ideal placebo control is problematic with psychological treatments and because treatment of chronic pain is typically multimodal, isolating the specific contribution of biofeedback is difficult. An ideal study design would be an RCT comparing biofeedback with a sham intervention; an alternative design would be an RCT comparing an intervention, such as exercise, with and without the addition of biofeedback.

ANXIETY DISORDERS

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with anxiety disorders.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with anxiety disorders?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with anxiety disorders.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat anxiety disorders: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Follow-up at 8 weeks is of interest to monitor outcomes.

Setting
Patients with anxiety disorders are actively managed by psychologists and other mental health professionals in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

To assess longer term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

Studies with duplicative or overlapping populations were excluded.

Systematic Reviews

Goessl et al (2017) published a meta-analysis on the effect of heart rate variability (HRV) biofeedback (HRVB) training on patients with stress and anxiety. HRV is a measure of cardiac vagal tone. Low HRV is associated with certain psychological states such as anxiety. The literature search identified 24 studies (total N=484 patients), published between 1976 and 2015, for inclusion. Sample sizes ranged from 5 to 106 patients (median, 14 patients). The Cochrane risk of bias tool was used to assess study quality. Many studies had high or unclear risk of bias due to the following factors: inadequate randomization descriptions, improper randomization, undescribed allocation concealment, and missing data that was either not described or mishandled; 13 studies included a comparison group (6 waitlist, 3 standard of care, 2 sham, 1 daily thought record, 1 progressive muscle relaxation). The average within-group effect size among the 24 studies, measured by Hedges’ g, was 0.81, indicating a large effect on anxiety. The average between-group effect size among the 13 studies with comparators, also measured by Hedges’ g, was 0.83, indicating HRV had a larger effect on anxiety than the comparators.

The Canadian Agency for Drugs and Technology in Health (2014) published a rapid response report on biofeedback for treating mood and anxiety disorders. This systematic review of the literature did not identify any health technology assessments, systematic reviews, meta-analyses, RCTs, or nonrandomized studies evaluating biofeedback for the treatment of generalized anxiety disorder.

Randomized Controlled Trials

Chen et al (2017) published an RCT comparing diaphragmatic breathing relaxation (DBR) with routine respiration activities in the treatment of 46 patients with anxiety. DBR is a technique that uses diaphragm muscle contractions to force air downward into the body, increasing diaphragm length and breathing efficiency. Outcomes were anxiety level, measured by Beck Anxiety Inventory, and 4 physiological measures (skin conductivity, peripheral blood flow, heart rate, breathing rate). All patients participated in an individualized 8-week course in breathing relaxation, but only 30 completed it. Fifteen were randomized to DBR training and 15 to routine breathing relaxation training. Researchers and patients were blinded to randomization, with only the trainer being aware of group allocation. After 8 weeks, the DBR group experienced statistically significant decreases in Beck Anxiety Inventory scores compared with baseline, while the control group did not. The DBR group also experienced significant improvements in all four physiological measurements, while the control group did not.

Section Summary: Anxiety Disorders

Two systematic reviews on HRVB found that biofeedback had a positive effect on anxiety levels, though the studies had small sample sizes and, in general, were of poor quality. An RCT evaluating DBR also found a positive effect on anxiety, though this trial also had a small sample size. Additional higher quality research with larger sample sizes is needed.

ASTHMA

Clinical Context and Test Purpose

The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with asthma.
The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with asthma?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with asthma.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat asthma: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for asthma symptoms would typically occur in the months to years after starting treatment.

Setting
Patients with asthma are actively managed by primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
Yorke et al (2015) published a systematic review evaluating nonpharmacologic interventions for the treatment of adults with asthma.\(^5\) The literature search, conducted through May 2014, identified 23 studies for inclusion. The nonpharmacologic interventions were organized into groups: relaxation-based therapies (n=9 studies); cognitive-behavioral therapies (n=5 studies); biofeedback techniques (n=3 studies); and mindfulness (n=1 study). Five studies incorporated multicomponent interventions. The 3 biofeedback RCTs used different techniques: exhaled carbon dioxide capnography (pooled n=12)\(^6\); HRV using a physiograph (pooled n=94 patients)\(^7\); and respiratory sinus arrhythmia by electrocardiographic feedback and muscle tension by electromyography (EMG; pooled n=17 patients).\(^8\) Common outcomes in the 3 trials included peak expiratory flow and respiratory impedance. Two of the trials reported on medication use. While differences were detected in exhaled carbon dioxide, HRV, and muscle tension, no changes in forced expiratory volume in 1 second were found and medication use decreased in only 1 trial. Reviewers concluded that larger sample sizes were needed to demonstrate effects and that, differences between treatment groups did not translate into meaningful clinical benefits.

Randomized Controlled Trials
In a more recent RCT, Lehrer et al (2018) examined the efficacy and safety of HRVB on asthma to determine if the treatment could substitute for the controller or rescue medication and whether HRVB controls airway inflammation.\(^9\) In the 2-center trial, 68 paid steroid-naive volunteers with mild-to-moderate asthma received 3 months of HRVB or a comparison condition consisting of electroencephalography alpha biofeedback with relaxing music and relaxed paced breathing. Both treatment conditions showed similar significant improvements on the methacholine challenge test, asthma symptoms, and asthma quality of life, and the administration of albuterol after biofeedback
sessions produced a large improvement in pulmonary function test results. Trial data would suggest that HRVB not be considered as an alternative to asthma controller medications.

Section Summary: Asthma
A recent systematic review identified 3 RCTs using 3 biofeedback techniques, and a recent clinical trial examined two biofeedback techniques to treat asthma. These reported minor improvements in patients receiving biofeedback, but those improvements did not impact clinical benefits such as decreased medication use or increased forced expiratory volume in 1 second.

BELL PALSY

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with Bell palsy.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with Bell palsy?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with Bell palsy.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat Bell palsy: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Treatment and follow-up over 1 to 12 months is of interest to monitor outcomes.

Setting
Patients with Bell palsy are actively managed by physical therapists and neurologists in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
Cardoso et al (2008) published a systematic review on the effects of facial exercises on symptoms of Bell palsy. Studies including patients with unilateral idiopathic facial palsy treated with facial exercises associated with mirror and/or EMG biofeedback were selected. Four studies (total N=132 patients) met the eligibility criteria. The studies described mime therapy vs control (n=50 patients), mirror biofeedback exercise vs control (n=27 patients), “small” mirror movements vs conventional neuromuscular retraining (n=10 patients), and EMG biofeedback plus mirror training vs mirror training alone. The treatment length varied from 1 to 12 months. Reviewers concluded that, given the paucity of RCTs, the current evidence does not support the use of biofeedback to treat this population.
Section Summary: Bell Palsy
A systematic review identified 4 studies using 4 biofeedback techniques to treat Bell palsy. Sample sizes were small, and there was heterogeneity in the techniques used and length of treatments.

DEPRESSION

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with depression.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with depression?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with depression.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat depression: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for depression symptoms would typically occur in the months to years after starting treatment.

Setting
Patients with depression are actively managed by psychiatrists, psychologists and other mental health professionals in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
The Canadian Agency for Drugs and Technology in Health (2014) report on biofeedback for mood and anxiety disorders (previously discussed in the Anxiety section),\(^3\) included a systematic review of the literature on biofeedback for depression. Other than 2 dissertations using HRV biofeedback, no health technology assessments, systematic reviews, meta-analyses, RCTs, or nonrandomized studies evaluating biofeedback for the treatment of depression were identified.

Section Summary: Depression
A Canadian agency (2014) report only identified 2 dissertations using HRV biofeedback to treat depression.
HYPERTENSION

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with hypertension.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with hypertension?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with hypertension.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat hypertension: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Follow-up at 6 months is of interest to monitor outcomes.

Setting
Patients with hypertension are actively managed by primary care providers, cardiologists, and nephrologists in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
A systematic review of studies on biofeedback for hypertension was published by Greenhalgh et al (2009). Reviewers searched for RCTs that included adults with essential hypertension (defined as at least 140/90 mm Hg) and that compared biofeedback interventions, alone or in combination, with other therapies, to medication, sham biofeedback, no treatment, or another behavioral intervention. Thirty-six trials (total N=1660 patients) met inclusion criteria. Trials generally were small; only 4 included more than 100 patients. All were single-center, and most were conducted in the United States. Trials used a variety of biofeedback techniques including thermal biofeedback, galvanized skin response, pulse wave velocity, and HRV; some used more than 1 modality. Twenty studies evaluated biofeedback alone, 15 evaluated biofeedback combined with another intervention, and one had multiple arms and evaluated both types of interventions; only 4 trials included a sham biofeedback comparison group. Reviewers stated that they did not pool study findings due to differences in interventions and outcomes and the generally poor quality of the studies.

Reviewers reported that trials comparing biofeedback alone with no treatment or another behavioral intervention did not provide convincing evidence of the superiority of biofeedback. Only 1 of 5 trials that compared a biofeedback combination intervention (most commonly combined with relaxation) with a different behavioral treatment found the biofeedback intervention to be superior. Approximately half of
the trials comparing a biofeedback combination with no treatment found a significant benefit to the biofeedback combination, but the specific effects of biofeedback could not be determined from this analysis. Only 1 trial compared a biofeedback combination intervention with sham biofeedback, and it did not find a significant difference in the efficacy of the 2 interventions. Four studies on biofeedback alone and another four on a combined biofeedback intervention reported data beyond 6 months; most of them found no significant differences in efficacy between the biofeedback and control groups.

Randomized Controlled Trials
Wang et al (2016) published an RCT evaluating the effect of direct blood pressure biofeedback on patients with prehypertension or stage I hypertension. A trained nurse instructed patients in blood pressure self-regulation by using slow diaphragmatic breathing and passive attitude. During the 8-week training (1 session per week), patients in the treatment group received real-time blood pressure feedback signals (n=29) and the control group received pseudo-feedback signals (n=28). Outcomes were systolic and diastolic blood pressure, measured at baseline and one and eight weeks after training. Both groups significantly decreased blood pressure following training. The decreases were equal in magnitude, suggesting that blood pressure self-regulation training could effectively lower blood pressure, regardless of the type of feedback signal.

Section Summary: Hypertension
Although a large number of RCTs have suggested that biofeedback has efficacy in the treatment of hypertension, the evidence is insufficient due to the shortage of studies isolating the effect of biofeedback, the generally poor quality of trials, and heterogeneity across interventions used.

MOTOR DYSFUNCTION AFTER STROKE

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with motor dysfunction after stroke.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with a movement disorder such as motor dysfunction after stroke?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with motor dysfunction after stroke.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat stroke-related motor dysfunction: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for motor dysfunction after stroke would typically occur in the months to years after starting treatment.
Setting
Patients with motor dysfunction after stroke are actively managed by physical therapists and primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
Stanton et al (2017) updated a systematic review and meta-analysis published in 2011, which evaluated the effect of biofeedback on lower-limb activities in patients who have had a stroke. Only high-quality RCTs or quasi-RCTs with Physiotherapy Evidence Database scores greater than 4 were included. Training activities were walking (9 trials), standing (8 trials), and standing up (1 trial). Biofeedback techniques included weight distribution from a force platform or sensor (11 trials), muscle activity from EMG (3 trials), linear gait parameters (3 trials), and joint angle from a goniometer (1 trial). Visual feedback was used in 7 trials, auditory in 7 trials, and a combination of visual and auditory in 4 trials. The pooled standardized mean difference of the short-term effect of biofeedback from 17 trials (n=417) was significant (0.50; 95% confidence interval [CI], 0.3 to 0.7). Long-term effects could not be calculated because only 4 trials provided that information.

A systematic review by Zijlstra et al (2010) focused on studies evaluating biofeedback-based training to improve mobility and balance in adults older than 60 years of age. Although the review was not limited to studies on motor function after stroke, more than half included older adults poststroke. For review inclusion, studies had to include a control group of patients who did not receive biofeedback and to assess at least 1 objective outcome measure. Twelve (57%) of the 21 studies included individuals poststroke, 3 included older adults who had lower-limb surgery, and 6 included frail older adults without a specific medical condition. Individual studies were small, ranging from 5 to 30 patients. The added benefit of using biofeedback could be evaluated in 13 (62%) of 21 studies. Nine of the 13 studies found a significantly greater benefit with interventions that used biofeedback than with control interventions. However, the outcomes assessed were generally not clinical outcomes but laboratory-based measures related to executing a task (eg, moving from sitting to standing) in a laboratory setting and platform-based measures of postural sway. Only 3 studies reported long-term outcomes, and none of them reported a significant effect of biofeedback.

Table 1 summarizes the characteristics of selected systematic reviews.

Table 1. Characteristics of the Systematic Review

<table>
<thead>
<tr>
<th>Study</th>
<th>Dates</th>
<th>Trials</th>
<th>Participants¹</th>
<th>N (Range)</th>
<th>Design</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanton et al (2017)¹³</td>
<td>To 2015</td>
<td>18</td>
<td>Lower-limb motor function loss poststroke</td>
<td>429 (12-50)</td>
<td>RCTs</td>
<td>NR</td>
</tr>
<tr>
<td>Zijlstra et al (2010)¹⁵</td>
<td>1993-2012</td>
<td>21</td>
<td>Patients >60 y receiving biofeedback to improve motor function</td>
<td>NR (5-30)</td>
<td>17 RCTs, 4 other</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: not reported; RCT: randomized controlled trials.

Other systematic reviews have noted that RCTs have tended to have relatively small sample sizes.

Randomized Controlled Trials
Kim (2017) published an RCT on the effect of EMG on upper-extremity function in patients who have had a stroke. Patients were randomized to traditional rehabilitation therapy (n=15) or traditional
rehabilitation therapy plus EMG biofeedback training (n=15). Upper-limb function was measured by the Fugl-Meyer Assessment and the Manual Function Test, and activities of daily living were measured using the FIM instrument. Both Fugl-Meyer Assessment and the Manual Function Test scores improved significantly more in patients receiving EMG biofeedback. However, there was no significant difference in FIM score improvement between groups.

Yang (2016) published an RCT on the effect of biofeedback weight-bearing training on the ability to sit-stand-sit and on stability among patients who have had a stroke. Patients were randomized to biofeedback weight-bearing training (n=15) or functional weight-bearing training (n=15). Outcomes were time to sit-stand-sit and stability (measured by BioRescue, which detects an area of the center of pressure). Comparison statistics were calculated for pre- and posttraining results, and between treatment groups. The biofeedback group significantly improved on both outcomes compared with the control group.

Ghomashchi (2016) published an RCT evaluated the effect of visual biofeedback on postural balance disorders in patients who have had a stroke. Patients received conventional physical therapy and balance training exercises. During balance training, 16 patients were randomized to visual biofeedback and 15 patients to no visual information. Outcomes were the center of pressure and approximate entropy. Both groups experienced improvements in postural control, with no significant differences between rehabilitation methods.

Case Series
In a case series, Pellegrino et al (2017) tested the use of visual biofeedback in reducing postural control deficits on 11 chronic stroke survivors. Each participant was assessed using the Berg Balance Scale, Trunk Impairment Scale, and the Nottingham Sensory Assessment Scale for trial inclusion. The test method involved seating each participant on a custom-built force platform and mapping their initial center of pressure positions. The trial had 4 phases: familiarization, training, and pre- and post-training tests. After familiarization and training, subjects were tested to observe if and to what extent they could transfer performance improvement obtained with visual feedback training to the conditions where they have to move (1) without visual feedback, (2) in different directions, and (3) respond to different displacement amplitudes. The study found that most stroke survivors were able to perform the required task and improve task performance during the training phase when provided visual feedback, however, without visual feedback, most showed no improvement on pretraining performance. The authors concluded that postural training based exclusively on continuous visual feedback provided limited benefits. The small sample size and design limit conclusions to be drawn from the study results.

Section Summary: Motor Dysfunction After Stroke
The evidence base on biofeedback for improving motor function after stroke is limited by small studies, and there is variability by type, duration, and intensity of interventions. In addition, the outcome measures used were primarily assessments of motor activity based in a laboratory or research setting. The applicability of improvements in these types of measures to clinical outcomes, such as the ability to perform activities of daily living or the rate of falls, is unknown. In addition, few studies have reported long-term outcomes. Due to these limitations, the efficacy of biofeedback for improving mobility and balance in older adults cannot be drawn from the current evidence.

MOTOR DYSFUNCTION AFTER LOWER- LIMB INJURY OR SURGERY

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with motor dysfunction after lower-limb injury or surgery.
The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with motor dysfunction after lower-limb injury or surgery?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with motor dysfunction after lower-limb injury or surgery.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat motor dysfunction: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for motor dysfunction after lower-limb injury or surgery symptoms would typically occur in the months to years after starting treatment.

Setting
Patients with motor dysfunction after lower-limb injury or surgery are actively managed by physical therapists and primary care providers in an outpatient clinical setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
A systematic review by Silkman and McKeon (2010) evaluated the effectiveness of EMG biofeedback for improving muscle function during knee rehabilitation after injury. Four RCTs that compared knee rehabilitation exercise programs with and without biofeedback were identified. Sample sizes in individual studies ranged from 26 to 60 patients. Two of the 4 studies found a statistically significantly greater benefit in the programs that included biofeedback, while the others did not. The positive studies assessed intermediate outcomes (eg, contraction values of the quadriceps muscles). None of the studies were designed to assess functional outcomes.

Section Summary: Motor Dysfunction After Lower-Limb Injury or Surgery
A systematic review identified 4 RCTs. Evidence from these trials was limited due to small sample sizes, inconsistent results, and the measurement of intermediate outcomes rather than functional outcomes.

MULTIPLE SCLEROSIS

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with multiple sclerosis.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with multiple sclerosis?

The following PICOTS were used to select literature to inform this review.
Patients
The relevant population of interest is individuals with multiple sclerosis.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat multiple sclerosis: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Follow-up at 3 weeks is of interest to monitor outcomes.

Setting
Patients with multiple sclerosis are actively managed by neurologists, physical therapists, and primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Randomized Controlled Trials
An RCT by MacKay et al (2015) evaluated the addition of biofeedback to standard care in 40 patients with relapsing-remitting multiple sclerosis patients. The standard of care psychosocial intervention consisted of relaxation, mindfulness, social support, and education. All patients attended 1-hour training and assessment sessions at weekly intervals. During the first session, all patients had training in mindfulness breathing exercises and progressive muscle relaxation techniques. Patients randomized to the biofeedback arm received additional instruction on the use of biofeedback equipment for self-regulation. Following the 3 weekly sessions, patients were instructed to practice the exercises at home, with or without the use of biofeedback equipment. Outcomes included breathing rate and anxiety, depression, fatigue, and muscle tension measures. At the end of treatment, there were no statistically significant differences between groups in any outcomes. For example, the differences between the intervention group and the control group in breathing rate were 3.06 beats per minute (95% CI, -0.17 to 6.28 beats per minute; p=0.06) and the difference in muscle tension was -13.91 µV (95% CI, -30.06 to 2.25 µV; p=0.09). Both groups received similar amounts of provider contact, so nonspecific intervention effects were not an issue.

Observational Studies
A crossover study by van der Logt et al (2016) evaluated the effect of vibrotactile biofeedback for trunk sway on balance control in patients with multiple sclerosis. Ten patients performed a series of stance and gait tasks while trunk sway was measured using a SwayStar device attached to the waist. Patients underwent a series of tasks with and without an add-on to the SwayStar device, which provided patients with direction-specific vibrotactile feedback during the tasks. When patients performed the tasks with vibrotactile biofeedback, there was a general reduction in trunk sway, though not all the reductions differed significantly with trunk sway when performing the tasks without vibrotactile biofeedback.
Section Summary: Multiple Sclerosis
Two RCTs using biofeedback techniques for the treatment of multiple sclerosis were identified. The sample sizes were small, with no statistically significant differences between the biofeedback groups and control groups. Additional research with larger sample sizes is needed.

ORTHOSTATIC HYPOTENSION IN PATIENTS WITH SPINAL CORD INJURY

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with orthostatic hypotension due to spinal cord injury.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with orthostatic hypotension due to spinal cord injury?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with orthostatic hypotension due to spinal cord injury.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat orthostatic hypotension: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for orthostatic hypotension due to spinal cord injury symptoms would typically occur in the months to years after starting treatment.

Setting
Patients with orthostatic hypotension due to spinal cord injury are actively managed by neurologists in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
Gillis et al (2008) conducted a systematic review to assess the literature on the nonpharmacologic management of orthostatic hypotension during the early rehabilitation of persons with spinal cord injury.25 Participants with any level or degree of completeness of spinal cord injury and any time elapsed since their injuries were included. Interventions must have measured at least systolic blood pressure and have induced orthostatic stress in a controlled manner and have attempted to control orthostatic hypotension during an orthostatic challenge. Thirteen studies (total N=138 patients) were included in the review. Four distinct nonpharmacologic interventions for orthostatic hypotension were identified, and only 2 studies evaluated biofeedback. These 2 studies, which assessed 3 patients using biofeedback techniques, reported an average of 39% increase in systolic blood pressure. Reviewers concluded that “…The clinical usefulness of compression/pressure, upper body exercise and biofeedback for treating OH [orthostatic hypotension] has not been proven.”
MP 2.01.53
Biofeedback for Miscellaneous Indications

Section Summary: Orthostatic Hypotension in Patients With Spinal Cord Injury
A systematic review of the nonpharmacologic management of orthostatic hypotension in patients with spinal cord injury identified 2 studies using biofeedback. While the studies showed that biofeedback raised systolic blood pressure effectively, only 3 patients were assessed. Additional research with larger sample sizes is needed.

PAIN MANAGEMENT DURING LABOR

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients who need pain management during labor.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients who need pain management during labor?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is women needing pain management during labor.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to manage pain during labor: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for pain management during labor symptoms would typically occur in the days to weeks in the postnatal period.

Setting
Women needing pain management during labor are actively managed by anesthesiologists in an inpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
In a Cochrane review, Barragan Loayza et al (2011) evaluated RCTs on the use of biofeedback for managing pain during labor.26 Reviewers identified 4 RCTs published between 1982 and 2000 (total N=186 women). The studies were highly variable in terms of intervention modalities and outcomes measured, and thus findings were not pooled. In addition, reviewers judged the trials to be at high risk of bias (eg, unclear description of blinding and randomization methods). Overall, they found little difference in reported outcomes (eg, rates of Cesarean section, pharmacologic pain relief in women receiving biofeedback vs control interventions). Due to the small number of studies and small pooled sample size, the evidence did not support drawing conclusions about the effectiveness of biofeedback in labor pain control.
Section Summary: Pain Management During Labor
A Cochrane review identified 4 RCTs using biofeedback techniques to manage pain during labor. Pooled estimates were not possible due to heterogeneity in techniques and outcomes. Trials were also deemed high risk.

POSTTRAUMATIC STRESS DISORDER

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with posttraumatic stress disorder (PTSD).

The question addressed in this evidence review is: does the use of biofeedback improve the net health outcome in patients with PTSD?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with PTSD.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat PTSD: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Though not completely standardized, follow-up for PTSD symptoms would typically occur in the months to years after starting treatment.

Setting
Patients with PTSD are actively managed by psychologists and other mental health professionals in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
The 2014 Canadian Agency for Drugs and Technology in Health report on biofeedback for mood and anxiety disorders (previously discussed), included a systematic review of the literature on biofeedback for PTSD. One systematic review was identified; in it, Wahbeh et al (2014) assessed various complementary and alternative medicine approaches to treating PTSD. Four of 33 studies that met the selection criteria of the Wahbeh review addressed biofeedback. Among the biofeedback studies were 1 RCT, 1 nonrandomized trial, and 2 case series. The controlled trials either had mixed results or did not find a significant benefit of biofeedback. Reviewers gave the biofeedback evidence a grade C for unclear or conflicting scientific evidence.
Section Summary: Posttraumatic Stress Disorder
A systematic review of complementary and alternative medicine approaches to treating PTSD identified 4 studies using biofeedback techniques. Results from these studies were inconsistent. Larger controlled trials are needed.

PREVENTION OF PRETERM BIRTH

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for women susceptible to preterm birth.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in women who are susceptible to preterm birth?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is women who are susceptible to preterm birth.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to manage preterm birth: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Treatment of 2 weeks is of interest to monitor outcomes.

Setting
Women susceptible to preterm birth are actively managed by obstetricians and primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Randomized Controlled Trials
Siepmann et al (2014) published data on 48 female candidates for preterm labor between the 24th and the 32nd gestational week. Twenty-four women received 6 biofeedback sessions over 2 weeks, and the other 24 women received usual care. Preterm delivery occurred in 3 (13%) patients in the biofeedback group and 8 (33%) patients in the control group; the difference between groups was not statistically significant (p>0.05). Other gestational outcomes data, such as the gestational duration and birthweight, also did not differ significantly between groups.

Section Summary: Prevention of Preterm Birth
A single RCT was identified; it used biofeedback techniques to prevent preterm birth. There was no statistically significant difference between the biofeedback group and the control group in regard to the number of preterm deliveries or birthweight.
RAYNAUD DISEASE

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with Raynaud disease.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with Raynaud disease?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with Raynaud disease.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat Raynaud disease: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Follow-up at 1 year is of interest to monitor outcomes.

Setting
Patients with Raynaud disease are actively managed by rheumatologists and primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
A systematic review by Malenfant et al (2009) assessed the use of complementary and alternative medicine to treat Raynaud disease. Reviewers identified 5 trials using biofeedback techniques, and they reported a variety of outcomes. A pooled analysis of findings from 4 trials (n=110 patients) on the change in frequency of attacks (typically extremities feel cold and numb) favored the sham-control group over the biofeedback group (weighted mean difference, -1.21; 95% CI, -1.68 to -0.73; p<0.000). Several trials had more than 2 arms; in the preceding analysis, only the arms comparing active with sham biofeedback were included.

Randomized Controlled Trials
The trial given the highest quality rating in the Malenfant systematic review and with the largest sample size is the Raynaud’s Treatment Study, published in 2000. This randomized trial compared of sustained-release nifedipine with thermal biofeedback in 313 patients with primary Raynaud disease. In addition to these 2 treatment groups, there were 2 control treatments: pill placebo and EMG biofeedback. EMG biofeedback was chosen as a control because it did not address the physiological mechanism of Raynaud disease. The mean attack rate at 1 year (the primary study outcome) was 0.16 in the thermal biofeedback group, 0.23 in the EMG biofeedback group, 0.07 in the nifedipine group, and
0.21 in the placebo group. Nifedipine significantly reduced Raynaud attacks compared with placebo (p<0.002), but thermal feedback did not differ significantly from EMG biofeedback (0.37). There was no significant difference between attack rates in the nifedipine and thermal biofeedback groups for the primary outcome (p=0.08).

Section Summary: Raynaud Disease
A systematic review identified 5 trials using biofeedback techniques for the treatment of Raynaud disease. A meta-analysis of four of these trials showed more favorable outcomes for the patients in the sham-control group.

SLEEP BRUXISM

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with sleep bruxism.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with sleep bruxism?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with sleep bruxism.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat sleep bruxism: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Treatment and follow-up of 6 weeks is of interest to monitor outcomes.

Setting
Patients with sleep bruxism are actively managed by dentists, physical therapists, psychologists, and primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Systematic Reviews
Wang et al (2014) published a systematic review of RCTs and non-RCTs evaluating biofeedback treatment for sleep bruxism. Seventeen articles were reviewed, and 7 studies with (total N=240 participants) met the inclusion criteria. Studies were generally small; only 2 included more than 50 participants. Four studies used audio biofeedback, two used contingent electric stimulation, and one used visual biofeedback. Treatment durations ranged from 1 night to 6 weeks. In 4 studies, treatment duration was 2 weeks. Three studies at moderate risk of bias, and the other four were considered at high risk of bias. The primary outcome of the analysis was the number of sleep bruxism episodes per
hour detected by EMG recording. Only 2 studies (n=27 patients) reported this outcome and had data suitable for meta-analysis. A pooled analysis did not find a statistically significant difference between the biofeedback and control groups (mean difference, -4.47; 95% CI, -12.33 to 3.38). Findings were not pooled for any other outcomes.

Jokubauskas et al (2018) updated the systematic review by Wang (above) on the management of sleep bruxism with biofeedback.\(^{32}\) Five databases were searched for literature published after the original 2012 search. Six relevant publications were included (total N=86 adults), and of these studies, 4 were RCTs and 2 were uncontrolled before-after studies. For the quantitative synthesis, 2 additional studies were included from the original Wang review. Contingent electrical stimulation, audio feedback, and a maxillary biofeedback splint were among the biofeedback techniques investigated, and all studies measured sleep bruxism with EMG with the exception of one, which used a mini wireless biofeedback device that analyzed bite force. The primary outcome of the analysis was the number of sleep bruxism episodes per hour detected by EMG recording. Secondary outcomes of sleep quality and pain-related outcomes were also investigated in the studies, and 1 study reported on patient-perceived symptom change. Overall, the quality of these studies was assessed as low to moderate due to imprecision and inconsistency between studies, and risk of bias was graded as high to moderate. Despite limitations of the studies, the use of biofeedback to treat sleep bruxism has shown some effectiveness and is relatively safe and noninvasive.

Randomized Controlled Trials

Sato et al (2015) published a trial on the use of EMG biofeedback training for daytime clenching and its effect on sleep bruxism.\(^{33}\) Patients were monitored for 5 hours of daytime and nighttime and were randomized to EMG biofeedback (n=7) or to a control group (n=5). Patients in the biofeedback group received a small auditory signal in the daytime when clenching activity was detected. There were significant decreases in EMG events during weeks 2 and 3 in the biofeedback group during the daytime, and the decreases in events carried over into the night time. There were no decreases in EMG events in the control group.

One of the larger RCTs (N=57) was reported by Ommerborn et al (2007), who examined changes in sleep bruxism following treatment with a cognitive-behavioral therapy program consisting of problem solving, progressive muscle relaxation, nocturnal biofeedback, and training of recreation and enjoyment.\(^{34}\) Similar levels of improvements were observed for the occlusal splint group and for the multicomponent cognitive-behavioral program. The effects of biofeedback were not isolated in this trial, and thus conclusions cannot be drawn about its effectiveness compared with occlusal splinting.

Section Summary: Sleep Bruxism

One systematic review identified 17 studies using biofeedback techniques to treat sleep bruxism, and another more recent systematic review update was performed identifying 6 new studies but no new significant data. Pooled analyses of 2 studies with the same outcome (number of sleep bruxism episodes per hour) did not find a significant difference between the biofeedback and control groups. Heterogeneity in biofeedback techniques, outcomes measured, and treatment duration did not permit additional pooled analyses. An RCT published after the review, which tested EMG biofeedback, reported significant reductions in clenching activity in the biofeedback group, though the sample size was small. Additional research is needed with larger samples.
TINNITUS

Clinical Context and Test Purpose
The purpose of biofeedback is to provide a treatment option that is an alternative to or an improvement on existing therapies for patients with tinnitus.

The question addressed in this evidence review is: Does the use of biofeedback improve the net health outcome in patients with tinnitus?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with tinnitus.

Interventions
The therapy being considered is biofeedback.

Comparators
The following practice is currently being used to treat tinnitus: standard of care.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, and quality of life.

Timing
Treatment or follow-up of three months is of interest to monitor outcomes.

Setting
Patients with tinnitus are actively managed by otolaryngologists and primary care providers in an outpatient setting.

Study Selection Criteria
Methodologically credible studies were selected using the same principles outlined in indication 1.

Randomized Controlled Trials
An RCT by Weise et al (2008) investigated the efficacy of a biofeedback-based cognitive-behavioral treatment for tinnitus in Germany. Tinnitus patients (N=130) were randomized to an intervention group or a waiting-list control group. Treatment consisted of 12 sessions of a biofeedback-based behavioral intervention over 3 months. The primary outcome measures were global tinnitus annoyance and a daily rating of tinnitus disturbance (measured by a Tinnitus Questionnaire) and a daily diary (using visual analog scale scores). Patients in the waiting-list group participated in the treatment after the intervention group had completed its treatment. Results showed reductions in tinnitus annoyance, diary ratings of loudness, improvements in feelings of controllability, changes in coping cognitions, and changes in depressive symptoms in the biofeedback group. The Tinnitus Questionnaire total score has a range of 0 to 84. The preassessment mean in the Tinnitus Questionnaire total score was 54.7, and the postassessment mean was 32.5.

Section Summary: Tinnitus
A single RCT was identified and it evaluated the use of a biofeedback technique to treat patients with tinnitus. While improvements were reported in the biofeedback group, additional research would be needed to confirm these results.
SUMMARY OF EVIDENCE

For individuals with anxiety disorders who receive biofeedback, the evidence includes 2 systematic reviews and an RCT published after the review. Relevant outcomes are symptoms, functional outcomes, and quality of life. The systematic reviews and observational trial on HRVB and the RCT on DBR reported the positive effects of these treatments on anxiety. However, the trials had small sample sizes (median, 14 participants) and study quality was generally poor. Additional limitations included improper randomization, allocation concealment, and inadequate descriptions of randomization or missing data. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with asthma who receive biofeedback, the evidence includes 4 RCTs. Relevant outcomes are symptoms, functional outcomes, and quality of life. Each RCT used a different biofeedback technique, which provided patients with information on carbon dioxide, heart rate, and respiratory sinus arrhythmia. While the trials reported improvements in each parameter for which the patients received biofeedback, the improvements did not impact clinical outcomes such as medication use and forced expiratory volume. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with Bell palsy who receive biofeedback, the evidence includes 4 RCTs. Relevant outcomes are symptoms, functional outcomes, and quality of life. The RCTs evaluated the efficacy of adding a mirror and/or electromyography biofeedback to facial exercises. Sample sizes were small, and there was heterogeneity across techniques used and length of treatments. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with depression who receive biofeedback, the evidence includes a systematic review. Relevant outcomes are symptoms, functional outcomes, and quality of life. The review only identified 2 dissertations assessing the use of biofeedback for depression. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with hypertension who receive biofeedback, the evidence includes a systematic review and an RCT published after the review. Relevant outcomes are symptoms, functional outcomes, and quality of life. The systematic review identified 36 RCTs, though sample sizes were small and overall study quality poor. Various biofeedback techniques were used: thermal, galvanized skin response, pulse wave velocity, and HRV. Results across trials did not consistently show a benefit of biofeedback. Conclusions were limited due to the heterogeneity across interventions and the generally poor quality of the trials. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with motor dysfunction after stroke who receive biofeedback, the evidence includes systematic reviews, RCTs published after the systematic reviews, and a case series. Relevant outcomes are symptoms, functional outcomes, and quality of life. One systematic review identified 18 high-quality trials using the following biofeedback techniques: weight distribution on a platform sensor, muscle activity from electromyography, linear gait parameters, and joint angle from a goniometer. Feedback was visual, auditory, or both. Outcome measures primarily assessed motor activity in research settings, rather than clinical outcomes such as rates of falls or the ability to perform activities of daily living. Pooled effects showed improvements in motor function in the short term. The evidence is limited due to the variability in type, duration, and intensity of the interventions and lack of long-term outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with motor dysfunction after lower-limb injury or surgery who receive biofeedback, the evidence includes a systematic review. Relevant outcomes are symptoms, functional outcomes, and quality of life. The systematic review identified 4 RCTs evaluating the use of electromyography.
biofeedback. Sample sizes were small, with half of the trials reporting significant benefits of biofeedback and the other half reporting no difference between study groups. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with multiple sclerosis who receive biofeedback, the evidence includes 2 RCTs. Relevant outcomes are symptoms, functional outcomes, and quality of life. One trial used vibrotactile biofeedback and the other provided patients with heart rate and muscle tension biofeedback. Sample sizes were small, and trialists reported marginally significant differences between study groups. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with orthostatic hypotension due to spinal cord injury who receive biofeedback, the evidence includes a case series and a case report. Relevant outcomes are symptoms, functional outcomes, and quality of life. The case series and a case report collectively provided information on 3 patients given visual and auditory feedback. Patients were able to raise their systolic blood pressure by an average of 39%. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who need pain management during labor who receive biofeedback, the evidence includes 4 RCTs. Relevant outcomes are symptoms, functional outcomes, and quality of life. A Cochrane review graded the 4 trials as having a high risk of bias due to unclear descriptions of blinding and randomization methods. Due to the heterogeneity in biofeedback methods and outcomes measured, pooled analyses could not be performed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with PTSD who receive biofeedback, the evidence includes an RCT, a nonrandomized study, and 2 case series. Relevant outcomes are symptoms, functional outcomes, and quality of life. The studies had small sample sizes and inconsistent results. A systematic review of the 4 studies rated the evidence a grade C for conflicting scientific evidence. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are susceptible to preterm birth who receive biofeedback, the evidence includes an RCT. Relevant outcomes are symptoms, functional outcomes, and quality of life. In the RCT, women in the treatment group received heart rate variability biofeedback. Patients receiving the treatment experienced a decrease in perceived chronic stress, but there was no significant difference in the number of preterm births, gestational duration, or birth weight. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with Raynaud disease who receive biofeedback, the evidence includes a systematic review. Relevant outcomes are symptoms, functional outcomes, and quality of life. The systematic review identified 5 RCTs using biofeedback techniques. Pooled analysis was performed on four of these trials. Reduction in frequency of attacks was significantly lower in the sham-control group. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with sleep bruxism who receive biofeedback, the evidence includes 2 systematic reviews and an RCT published after the review. Relevant outcomes are symptoms, functional outcomes, and quality of life. One systematic review identified 7 randomized and nonrandomized studies using biofeedback techniques, and the most recent systematic review identified 6 additional studies. Studies were generally small, used different techniques, measured different outcomes, and were assessed as having either moderate or high risk of bias. Two studies reported the number of bruxism episodes per hour and a pooled analysis of these studies showed no significant differences between biofeedback
groups and control groups. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with tinnitus who receive biofeedback, the evidence includes a single RCT. Relevant outcomes are symptoms, functional outcomes, and quality of life. Treatment consisted of a biofeedback-based behavioral intervention over a 3-month period. The treatment group experienced improvements in tinnitus annoyance, loudness ratings, controllability, coping cognitions, and depressive symptoms. Additional studies are needed to confirm the results of this single trial. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

PRACTICE GUIDELINES AND POSITION STATEMENTS

American Psychiatric Association
The American Psychiatric Association (2010) guidelines on the treatment of patients with major depressive disorder did not list biofeedback as a potential treatment.36

The Association (2004) guidelines on the treatment of patients with acute stress disorder and posttraumatic stress disorder mentioned use of biofeedback to augment relaxation techniques.37 The guidelines suggested that biofeedback could provide patients with instantaneous feedback on physiological measures such as blood flow and muscle contraction, which would enable patients to exert some degree of control over those measures to relieve tension and anxiety.

American Academy of Sleep Medicine
The American Academy of Sleep Medicine (2017) released guidelines on the evaluation and management of chronic insomnia in adults.38 The guidelines listed biofeedback as one of several behavioral or psychological therapies to reduce chronic somatic arousal.

Scottish Intercollegiate Guidelines Network
The Scottish Intercollegiate Guidelines Network (2010) guidelines on the management of patients with stroke indicated that, based on evidence from 2 systematic reviews, “EMG [electromyographic] biofeedback is not recommended as a routine treatment for gait, balance or mobility problems after stroke.”39

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
No U.S. Preventive Services Task Force recommendations for the use of biofeedback have been identified.

MEDICARE NATIONAL COVERAGE
Medicare covers biofeedback:

“...only when it is reasonable and necessary for the individual patient for muscle re-education of specific muscle groups or for treating pathological muscle abnormalities of spasticity, incapacitating muscle spasm, or weakness, and more conventional treatments (heat, cold, massage, exercise, support) have not been successful. This therapy is not covered for treatment of ordinary muscle tension states or for psychosomatic conditions.”40

ONGOING AND UNPUBLISHED CLINICAL TRIALS
Some currently unpublished trials that might influence this review are listed in Table 2.
Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02667392</td>
<td>Biofeedback to Increase Propulsion During Walking after Stroke</td>
<td>30</td>
<td>Jan 2019</td>
</tr>
<tr>
<td>NCT02998502</td>
<td>Efficacy of a Biofeedback Breathing System for Anxiety and Panic Disorders</td>
<td>60</td>
<td>Mar 2019</td>
</tr>
<tr>
<td>NCT03039231</td>
<td>Investigation of the Freespira Breathing System in the Treatment of Post-traumatic Stress Disorder</td>
<td>55</td>
<td>Oct 2019</td>
</tr>
<tr>
<td>NCT03030326</td>
<td>Biofeedback for Asthma Comorbid with Anxiety or Depression</td>
<td>20</td>
<td>Dec 2020</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02237885</td>
<td>Pain Management Using Mobile Technology in Veterans with Post-traumatic Stress Disorder and Traumatic Brain Injury</td>
<td>41</td>
<td>Nov 2017 (completed)</td>
</tr>
<tr>
<td>NCT02119936</td>
<td>Feasibility of Heart Rate Variability Feedback as a Stress Reduction Tool for Hospitalized Pregnant Women</td>
<td>30</td>
<td>Dec 2016 (terminated)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>90875-90876</td>
<td>Individual psychophysiological therapy incorporating biofeedback training by any modality (face-to-face with the patient), with psychotherapy (eg, insight oriented, behavior modifying, or supportive psychotherapy); code range</td>
</tr>
<tr>
<td></td>
<td>90901</td>
<td>Biofeedback training by any modality</td>
</tr>
<tr>
<td>HCPCS</td>
<td>E0746</td>
<td>Electromyography (EMG), biofeedback device</td>
</tr>
<tr>
<td>ICD-10-CM</td>
<td>E0746</td>
<td>Investigational for all relevant diagnoses</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td>GZC9ZZZ</td>
<td>ICD-10-PCS codes are only used for inpatient services</td>
</tr>
<tr>
<td>Type of service</td>
<td>Medicine</td>
<td></td>
</tr>
<tr>
<td>Place of service</td>
<td>Outpatient/inpatient</td>
<td></td>
</tr>
</tbody>
</table>
POLICY HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/14/14</td>
<td>Replace policy</td>
<td>Policy updated with literature review through June 18, 2014. Prevention of preterm birth added as another example of a miscellaneous indication in the policy statement. References 7 and 14 added.</td>
</tr>
<tr>
<td>08/13/15</td>
<td>Replace policy</td>
<td>Policy updated with literature review through June 22, 2015; references 2, 10, and 13 added. Multiple sclerosis, depression, and posttraumatic stress disorder added to investigational statement. Autism removed from investigational statement.</td>
</tr>
<tr>
<td>02/24/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho annual review; no change to policy.</td>
</tr>
<tr>
<td>08/30/17</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes as noted. Policy updated with literature review through June 22, 2017; references 4-5, 11, 14, 17-19, 21, and 31 added. Minor edits to the Policy section; statement otherwise unchanged.</td>
</tr>
<tr>
<td>08/20/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho annual review; no change to policy.</td>
</tr>
<tr>
<td>11/15/18</td>
<td>Replace policy</td>
<td>Blue Cross of Idaho adopted changes to policy as noted, effective 11/15/2018. Policy updated with literature review through September 20, 2018; references 9, 21, and 32 added; references 38 and 40 updated. Policy statement unchanged.</td>
</tr>
</tbody>
</table>